EPA Regulations provides a certified course for the technicians involved in the Air-conditioning system.
Answer: Option (b)
<u>Explanation:</u>
The EPA regulation has implemented an act called the "Clean Air Act" under the "section of 609".
This act provides some basic requirements for EPA Regulation such as follows;
- Refrigerant: This unit must be approved by EPA Regulations before being implemented into the atmosphere.
- Servicing: This system provides a certified course for technicians in service and also approve them with proper refrigerant equipment.
- Reuse Refrigerants: The use of recycled refrigerants must be properly monitored before it comes in to serve.
Complete Question
For some metal alloy, a true stress of 345 MPa (50040 psi) produces a plastic true strain of 0.02. How much will a specimen of this material elongate when a true stress of 411 MPa (59610 psi) is applied if the original length is 470 mm (18.50 in.)?Assume a value of 0.22 for the strain-hardening exponent, n.
Answer:
The elongation is 
Explanation:
In order to gain a good understanding of this solution let define some terms
True Stress
A true stress can be defined as the quotient obtained when instantaneous applied load is divided by instantaneous cross-sectional area of a material it can be denoted as
.
True Strain
A true strain can be defined as the value obtained when the natural logarithm quotient of instantaneous gauge length divided by original gauge length of a material is being bend out of shape by a uni-axial force. it can be denoted as
.
The mathematical relation between stress to strain on the plastic region of deformation is

Where K is a constant
n is known as the strain hardening exponent
This constant K can be obtained as follows

No substituting
from the question we have


Making
the subject from the equation above




From the definition we mentioned instantaneous length and this can be obtained mathematically as follows

Where
is the instantaneous length
is the original length



We can also obtain the elongated length mathematically as follows



Answer:
D. Both pull-in and hold-in windings are energized.
Explanation:
The instant the ignition switch is turned to the start position, "Both pull-in and hold-in windings are energized." This is because the moment the ignition switch is turned to the start position, voltage passes through to the S terminal of the solenoid.
The hold-in winding is attached to the case of the solenoid. Similarly, the pull-in winding is also attached to the starter motor. Thereby, the current will move across both windings by getting energized to generate a strong magnetic field.
Answer:
The theoretical maximum specific gravity at 6.5% binder content is 2.44.
Explanation:
Given the specific gravity at 5.0 % binder content 2.495
Therefore
95 % mix + 5 % binder gives S.G. = 2.495
Where the binder is S.G. = 1, Therefore
Per 100 mass unit we have (Mx + 5)/(Vx + 5) = 2.495
(95 +5)/(Vx +5) = 2.495
2.495 × (Vx + 5) = 100
Vx =35.08 to 95
Or density of mix = Mx/Vx = 95/35.08 = 2.7081
Therefore when we have 6.5 % binder content, we get
Per 100 mass unit
93.5 Mass unit of Mx has a volume of
Mass/Density = 93.5/2.7081 = 34.526 volume units
Therefore we have
At 6.5 % binder content.
(100 mass unit)/(34.526 + 6.5) = 2.44
The theoretical maximum specific gravity at 6.5% binder content = 2.44.
Answer: Hello the question is incomplete below is the missing part
Question: determine the temperature, in °R, at the exit
answer:
T2= 569.62°R
Explanation:
T1 = 540°R
V2 = 600 ft/s
V1 = 60 ft/s
h1 = 129.0613 ( value gotten from Ideal gas property-air table )
<em>first step : calculate the value of h2 using the equation below </em>
assuming no work is done ( potential energy is ignored )
h2 = [ h1 + ( V2^2 - V1^2 ) / 2 ] * 1 / 32.2 * 1 / 778
∴ h2 = 136.17 Btu/Ibm
From Table A-17
we will apply interpolation
attached below is the remaining part of the solution