Answer:
15.04 mL
Explanation:
Using Ideal gas equation for same mole of gas as
Given ,
V₁ = 21 L
V₂ = ?
P₁ = 9 atm
P₂ = 15 atm
T₁ = 253 K
T₂ = 302 K
Using above equation as:
Solving for V₂ , we get:
<u>V₂ = 15.04 mL</u>
Larger molecules experience larger dispersion forces due to more distance of valance of electrons from the nucleus.
<h2>Cause of stronger dispersion force</h2>
Larger and heavier atoms and molecules have stronger dispersion forces than smaller and lighter ones because in a larger atom or molecule, the valence electrons are farther from the nuclei than in a smaller atom or molecule.
They are less tightly held to the nuclear charge present in the nucleus and can easily form temporary dipoles so we can conclude that larger molecules experience larger dispersion forces due to more distance of valance of electrons from the nucleus.
Learn more about London dispersion force here: brainly.com/question/1454795
Learn more: brainly.com/question/26139894
Answer:
mass gives the mass of atoms while molecular weight gives the mass of molecules
In a salt solution, the water potential is lower than that in the cell. In this case, water molecules will flow from a region of higher water potential to a region of lower water potential by osmosis. Which where water molecules is now flowing out of the cell to the salt solution. Because the cell lose so much water that it now shrinks.
Osmosis is where water molecules move down the water potential gradient through a semi permeable membrane, which is the cell membrane in this case.