Answer:
See explanation
Explanation:
If the energy of the ground state E1 is known, then we need to measure the difference in energy between the energy levels E5 .and E1. We can obtain this by measuring the frequency or wavelength of a photon that is emitted when an electron moves from energy level E5 to E1.
From Bohr's model;
ΔE = E5 - E1
Hence;
E5 = ΔE + E1
The mass of 1.72 mol of magnesium fluoride is 107 grams.
To determine the mass of 1.72 mol of magnesium fluoride, we first need the chemical formula of magnesium fluoride. Magnesium forms a +2 ion (Mg+2) and fluoride forms a -1 ion (F-1). Since all compounds formed from ions have to be electrically neutral, we need 2 fluoride ions and 1 magnesium ion. Therefore, the formula for magnesium fluoride is MgF2.
Now we need to determine the molar mass of the compound from the molar mass values from the periodic table. Let's use a table to calculate this molar mass.
Molar mass of MgF2
Element Molar Mass (g/mol) Quantity Total (g/mol)
Mg 24.31 1 24.31
F 19.00 2 38.00
Total molar mass of MgF2 = 24.31 g/mol + 38.00 g/mol = 62.31 g/mol
This is the mass of one mole of the substance. If we have 1.72 mols of it, we multiply 1.72 by 62.31.
1.72 mol (62.31 g/mol) = 107 grams
We rounded to 107 to keep the correct number of significant digits in our answer.
According to Boyle's Law, P1V1 = P2V2
where P1 and V1 are initial pressure and volume respectively. P2 and V2 are final pressure and volume receptively.
Given: P2 = 4 P1 and V1 = 10.0l
∴ V2 = 2.5 l
Answer: Final volume of system is 2.5 l
42.4 ml is the volume in milliliters of the lead ball if a lead ball is added to a graduated cylinder containing 50.6 ml of water.
<h3>What is a graduated cylinder?</h3>
A tall narrow container with a volume scale is used especially for measuring liquids.
The graduated cylinder contains water
mL is a volume unit.
Water volume = 50.6 ml
The lead ball caused an increase in volume from 50.6 ml to 93.0 mL.
The new volume is the lead ball volume plus the original water volume :
Final volume = Vlead ball+ Water original volume



Hence, 42.4 ml is the volume in milliliters of the lead ball.
Learn more about the graduated cylinder here:
brainly.com/question/13386106
#SPJ1
Answer:
D
Explanation:
Hello!
Since the rate must have the following units: mol/(L*s), the suitable units for k, considering that the term [D] [X] leads to mol^2/(L^2) (it means a second order kinetic law), are L/(mol*s), nevertheless, that answer isn't in the given options.