Answer:
9.63 L.
Explanation:
Hello,
In this case, the undergoing chemical reaction is:

So the consumed amounts of hydrochloric acid and bromine are the same to the beginning based on:

In such a way, the yielded moles of hydrobromic acid and chlorine are:

Thus, the volume of the sample, after the reaction is the same as no change in the total moles is evidenced, that is 9.63L.
Best regards.
Answer:
4Fe + 3O2 + 6H2O → 4Fe(OH)3
Explanation:
The chemical formula for rust is Fe2O3 and is commonly known as ferric oxide or iron oxide. The final product is a series of chemical reactions simplified below as- The rusting of the iron formula is simply 4Fe + 3O2 + 6H2O → 4Fe(OH)3. The rusting process requires both the elements of oxygen and water.
The atomic number in an element is usually how many protons the element has. For example, Hydrogen has a 1 on top of the H (on the periodic table), therefore, Hydrogen has 1 proton. Oxygen has an 8 on top of the O (on the periodic table) so therefore, Oxygen has 8 protons.
Mexican Texas<span> is the historiographical name used to refer to the era of </span>Texan<span> history between 1821 and 1836, </span>when it was part<span> of </span>Mexico<span>. </span>Mexico gained independence<span> from Spain in 1821 in </span>its war<span> of</span>independence<span>. Initially, </span>Mexican Texas<span> operated very similarly to Spanish </span>Texas<span>.</span>