Fission reactions generate thermal energy
Answer:
Here's your Answer
Explanation:
the mass spectrum is the graphical representation of the ion abundance versus the mass to charge of the ions separated in mass spectrometer
Answer:
a. 63.2%
b. 11.7%
c. 73.3%
d. 0.995%
e. 55.5%
Explanation:
An ionic compound is a compound that is formed by ions, so one of the elements must donate electrons (which is the cation, the positive ion), and the other will receive these electrons (which is the anion, the negative ion).
The power of an element has to attract the electrons is called electronegativity, and so, as higher is the difference of electronegative of the elements, it is more probable that one of them will "still" the electrons and will form an ionic compound. The percent of this ionic character can be found by the Pauling's equation:
*100%
Where
is the electronegativity difference of the elements. Thus, consulting an electronegativity table:
a.
= 1.5
= 3.5
*100%
%IC = 63.2%
b.
= 1.6
= 2.1
*100%
%IC = 11.7%
c.
= 0.7
= 3.0
*100%
%IC = 73.3%
d.
= 1.7
= 1.9
*100%
%IC = 0.995 %
e.
= 1.2
= 3.0
*100%
%IC = 55.5%
Different elements produce different colors of light when heated because the electrons in these elements have different permissible energy levels. When an element is heated, the electrons inside it become excited and move to an higher energy level from the ground state. When the electrons drop from this higher energy level, they typically emit energy quantum, the color of the light that is observed at this stage depends on difference that exist in the two energy levels.<span />
Absorbance is related to the concentration of a substance using the Beer-Lambert's Law. According to this law, absorbance is linearly related to concentration. However, this is only true up to a certain concentration depending on the substance. For this case, we assume that the said law is applicable.
A = kC
Using the first conditions, ewe solve for k.
0.26 = k (0.10)
k = 2.6
A = kC
A = 2.6 (0.20) = 0.52
Therefore, the absorbance at a concentration of 0.20 M and wavelength of 500nm is 0.52.