1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tangare [24]
3 years ago
13

The __________________ is the entire range of Electromagnetic Waves.

Physics
1 answer:
Debora [2.8K]3 years ago
3 0

Answer:

I think its the electromagnetic spectrum

You might be interested in
What happens in a global convection cell? apex​
zysi [14]

Answer:

In a global convection cell less –dense air at the equator rises and flows towards the poles. And from pole, the dense air sinks down and flows back towards the equator.... This movement of air is also supported by the Earth's rotation known as Coriolis Effect.

4 0
3 years ago
A loaded 375 kg toboggan is traveling on smooth horizontal snow at 4.50 m/s when it suddenly comes to a rough region. The region
zmey [24]

Answer:

a) The average friction force exerted on the toboggan is 653.125 newtons, b) The rough region reduced the kinetic energy of the toboggan in 92.889 %, c) The speed of the toboggan is reduced in 73.333 %.

Explanation:

a) Given the existence of non-conservative forces (friction between toboggan and ground), the motion must be modelled by means of the Principle of Energy Conservation and the Work-Energy Theorem, since toboggan decrease its speed (associated with  due to the action of friction. Changes in gravitational potential energy can be neglected due to the inclination of the ground. Then:

K_{1} = K_{2} + W_{f}

Where:

K_{1}, K_{2} are the initial and final translational kinetic energies of the tobbogan, measured in joules.

W_{f} - Dissipated work due to friction, measured in joules.

By applying definitions of translation kinetic energy and work, the expression described above is now expanded and simplified:

f\cdot \Delta s = \frac{1}{2}\cdot m \cdot (v_{1}^{2}-v_{2}^{2})

Where:

f - Friction force, measured in newtons.

\Delta s - Distance travelled by the toboggan in the rough region, measured in meters.

m - Mass of the toboggan, measured in kilograms.

v_{1}, v_{2} - Initial and final speed of the toboggan, measured in meters per second.

The friction force is cleared:

f = \frac{m\cdot (v_{1}^{2}-v_{2}^{2})}{2\cdot \Delta s}

If m = 375\,kg, v_{1} = 4.50\,\frac{m}{s}, v_{2} = 1.20\,\frac{m}{s} and \Delta s = 5.40 \,m, then:

f = \frac{(375\,kg)\cdot \left[\left(4.50\,\frac{m}{s} \right)^{2}-\left(1.20\,\frac{m}{s}\right)^{2}\right]}{2\cdot (5.40\,m)}

f = 653.125\,N

The average friction force exerted on the toboggan is 653.125 newtons.

b) The percentage lost by the kinetic energy of the tobbogan due to friction is given by the following expression, which is expanded and simplified afterwards:

\% K_{loss} = \frac{K_{1}-K_{2}}{K_{1}}\times 100\,\%

\% K_{loss} = \left(1-\frac{K_{2}}{K_{1}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{\frac{1}{2}\cdot m \cdot v_{2}^{2}}{\frac{1}{2}\cdot m \cdot v_{1}^{2}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{v_{2}^{2}}{v_{1}^{2}} \right)\times 100\,\%

\%K_{loss} = \left[1-\left(\frac{v_{2}}{v_{1}}\right)^{2} \right]\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\%K_{loss} = \left[1-\left(\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} }\right)^{2} \right]\times 100\,\%

\%K_{loss} = 92.889\,\%

The rough region reduced the kinetic energy of the toboggan in 92.889 %.

c) The percentage lost by the speed of the tobbogan due to friction is given by the following expression:

\% v_{loss} = \frac{v_{1}-v_{2}}{v_{1}}\times 100\,\%

\% v_{loss} = \left(1-\frac{v_{2}}{v_{1}} \right)\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\% v_{loss} = \left(1-\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} } \right)\times 100\,\%

\%v_{loss} = 73.333\,\%

The speed of the toboggan is reduced in 73.333 %.

5 0
3 years ago
A 217 Ω resistor, a 0.875 H inductor, and a 6.75 μF capacitor are connected in series across a voltage source that has voltage a
Nataly [62]

For an AC circuit:

I = V/Z

V = AC source voltage, I = total AC current, Z = total impedance

Note: We will be dealing with impedances which take on complex values where j is the square root of -1. All phasor angles are given in radians.

For a resistor R, inductor L, and capacitor C, their impedances are given by:

Z_{R} = R

R = resistance

Z_{L} = jωL

ω = voltage source angular frequency, L = inductance

Z_{C} = -j/(ωC)

ω = voltage source angular frequency, C = capacitance

Given values:

R = 217Ω, L = 0.875H, C = 6.75×10⁻⁶F, ω = 220rad/s

Plug in and calculate the impedances:

Z_{R} = 217Ω

Z_{L} = j(220)(0.875) = j192.5Ω

Z_{C} = -j/(220×6.75×10⁻⁶) = -j673.4Ω

Add up the impedances to get the total impedance Z, then convert Z to polar form:

Z = Z_{R} + Z_{L} + Z_{C}

Z = 217 + j192.5 - j673.4

Z = (217-j480.9)Ω

Z = (527.6∠-1.147)Ω

Back to I = V/Z

Given values:

V = (30.0∠0+220t)V (assume 0 initial phase, and t = time)

Z = (527.6∠-1.147)Ω (from previous computation)

Plug in and solve for I:

I = (30.0∠0+220t)/(527.6∠-1.147)

I = (0.0569∠1.147+220t)A

To get the voltages of each individual component, we'll just multiply I and each of their impedances:

v_{R} = I×Z_{R}

v_{L} = I×Z_{L}

v_{C} = I×Z_{C}

Given values:

I = (0.0569∠1.147+220t)A

Z_{R} = 217Ω = (217∠0)Ω

Z_{L} = j192.5Ω = (192.5∠π/2)Ω

Z_{C} = -j673.4Ω = (673.4∠-π/2)Ω

Plug in and calculate each component's voltage:

v_{R} = (0.0569∠1.147+220t)(217∠0) = (12.35∠1.147+220t)V

v_{L} = (0.0569∠1.147+220t)(192.5∠π/2) = (10.95∠2.718+220t)V

v_{C} = (0.0569∠1.147+220t)(673.4∠-π/2) = (38.32∠-0.4238+220t)V

Now we have the total and individual voltages as functions of time:

V = (30.0∠0+220t)V

v_{R} = (12.35∠1.147+220t)V

v_{L} = (10.95∠2.718+220t)V

v_{C} = (38.32∠-0.4238+220t)V

Plug in t = 22.0×10⁻³s into these values and take the real component (amplitude multiplied by the cosine of the phase) to determine the real voltage values at this point in time:

V = 30.0cos(0+220(22.0×10⁻³)) = 3.82V

v_{R} = 12.35cos(1.147+220(22.0×10⁻³)) = 11.8V

v_{L} = 10.95cos(2.718+220(22.0×10⁻³)) = 3.19V

v_{C} = 38.32cos(-0.4238+220(22.0×10⁻³)) = -11.2V

4 0
3 years ago
Radio wave radiation falls in the wavelength region of 10.0 to 1000 meters. What is the energy of radio wave radiation that has
dmitriy555 [2]

Answer:

Explanation:

Given

Wavelength of radiation \lambda =784\ m

We know Energy of wave with wavelength \lambda is given by

E=\frac{hc}{\lambda }

where h=Planck's constant

c=velocity of light

\lambda=wavelength of wave

E=\frac{6.626\times 10^{-34}\times 3\times 10^8}{784}

E=2.53\times 10^{-28}\ J

Hence the energy of the wave with wavelength 784 m is 2.53\times 10^{-28}\ J

7 0
3 years ago
Which is the second largest planet in the solar system​
shutvik [7]

Answer:

Saturn is the answer of your question

8 0
3 years ago
Other questions:
  • 22 points !
    5·1 answer
  • Suppose a log's mass is 5 kg. After burning, the mass of the ash is 1 kg. explain what May have happened to the other 4 kg
    12·1 answer
  • If a bird applies a 5 N upward force on a branch to lift the branch of ground to a
    11·1 answer
  • A flutist assembles her flute in a room where the speed of sound is 342m/s . When she plays the note A, it is in perfect tune wi
    10·1 answer
  • In the following atomic model, where does the strong nuclear force happen? mc006-1.jpg outside A between A and B between B and C
    5·1 answer
  • A tube with a cap on one end, but open at the other end, has a fundamental frequency of 130.8 Hz. The speed of sound is 343 m/s
    6·1 answer
  • PLS HELP I NEED ANSWER HOMEWORK DUE SOON
    6·1 answer
  • A thermometer has its term marked millimeter instead of degree celcuis .The lower fixed point is 30mm and upper fixed point is 1
    13·1 answer
  • A car travels at a speed of 30 mph.How far dose the car travel in 2 hours
    14·1 answer
  • Which of the following is NOT an example of the 3rd law of motion (for every Action, there is an equal but opposite reaction?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!