This answer is the same for all elements, a single atom of any element is still that element.
Answer:
hello your question is incomplete attached below is the complete question
answer :
20.16 v
Explanation:
The reading of the voltmeter at the instant the switch returns to position a
L = 5H
i ( current through inductor ) = 1/L ∫ V(t) d(t) + Vo
= 1/5 ∫ 3*10^-3 d(t) + 0 = 0.6 * 10^-3 t
iL ( 1.6 s ) = 0.6 * 10^-3 * 1.6 = 0.96 mA
Rm ( resistance ) = 21 * 1000 = 21 kΩ
The reading of the voltmeter ( V )
V = IR
= 0.96 mA * 21 k Ω = 20.16 v
Answer:
w = vR/3
Explanation:
The centre of mass of the loop to bullet system is given by D / 4 from centre of loop, which is equivalent to R / 2 from its centre.
From the principle of conservation of linear momentum
, we have
m*v = 2*m* Vcm
Where v = velocity of bullet, Vcm = velocity of wood
Hence, we have
Vcm = v2
Also, from the conservation of angular momentum about the centre of mass.
M*V*(R/2) = Ic*w - equation (I)
where Ic = moment of inertia and w = angular velocity
Ic for a ring is given by
Ic of a bullet is given by
Hence, the moment of inertia of the system is given by the summation of the two moments of inertia Ic(ring) + Ic(bullet) which gives
Ic(system) = 
Substituting back into equation (I), we have

Hence, we obtain w =vR/3
w=v3R
Explanation:
The given data is as follows.
C =
R =
ohm
C
Q =
Formula to calculate the time is as follows.
0.135 =
= 7.407
t = 4.00 s
Therefore, we can conclude that time after the resistor is connected will the capacitor is 4.0 sec.
Answer:
2.605m
Explanation:
Using the formula for calculating Range (distance travelled in horizontal direction)
Range R = U√2H/g
U is the speed = 4.8m/s
H is the maximum height = ?
g is the acc due to gravity = 9.8m/s²
R = 3.5m
Substitute into the formula and get H
3.5 = 4.8√2H/9.8
3.5/4.8 = √2H/9.8
0.7292 = √2H/9.8
square both sides
0.7292² = 2H/9.8
2H = 0.7292² * 9.8
2H = 5.21
H = 5.21/2
H = 2.605m
Hence the height of the ball from the ground is 2.605m