<h3>When the object is placed at a further distance from the center of the mirror's curvature (twice the focal length), we will get a thumbnail</h3><h3 /><h3>position of the image from the mirror; Between focus and center of curvature of the mirror (double focal length)</h3><h3 /><h3> picture description; real, inverted, mini</h3>
<h3>* This picture is to draw the rays, just replace the candle with an apple .</h3>
<h3>Do you want me to write it in Spanish to help you?? ^_^</h3>
I hope I helped you^_^
<h3 />
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Answer:
Twice.
Explanation:
The momentum of an object is given by :
p = mv
Where
m is mass and v is the velocity
If the mass of the ball were doubled, m'=2m and v'=v=3 m/s
New momentum,
p'=m'v'
p'=2m × v
p'=2mv
or
p'=2p
So, the new momentum becomes twice the initial momentum.
Answer:
Part 1) Voltage in secondary windings is 61.08 Volts
Part 2) Current in secondary windings is 0.53 Amperes
Explanation:
The potential developed in the primary and secondary winding of a transformer are related as

where
Np no of turns in primary coil
Ns no of turns in secondary coil
Vp Voltage of turns in primary coil
Vs Voltage of turns in secondary coil
Applying values in the formula we get

Part 2)
Using Ohm's law the current is given by

Answer:
40.91 m/s
Explanation:
w = angular velocity of the ball about the elbow joint = 30.3 rad/s
r = radius of circular turn = distance of the ball from the elbow joint = 1.35 m
v = linear velocity of the ball
Linear velocity of the ball is given as
v = r w
Inserting the values given above in the equation
v = (1.35) (30.3)
v = 40.91 m/s