Answer:
Water has the ability to release a large amount of energy during the freezing process. All of this energy is released into the air, resulting in a greater movement of air particles that will increase the air temperature. This heat will prevent air temperatures from drastically falling below 0ºC.
Explanation:
The latent heat of water occurs when the water is changing its physical state. In other words, when substances are changing their physical state, the amount of heat calculated for this change is called latent heat, and as we have already said, this heat is not related to the heat exchanges between two systems, but the change of state. physicist.
When water is changing from its liquid state to a solid state, we call latent heat latent heat from fusion (this is because fusion is the name we give to when liquid water is turning to ice). In the process of freezing the page, latent heat releases a large amount of energy into the air near the water. This energy agitates the air molecules, generating heat and preventing the air from reaching temperatures below 0ºC.
Answer:
The answer depends on what object you are dropping. Are you dropping a balloon or a car? (I'm joking 'bout that one.) If the mass of the object is very little, then it might drop slower. If the mass is bigger, then it might drop faster.
Good luck!
Explanation:
Answer:
I think its C sorry if it's wrong
If I had to go with any of those answers, It would be A maybe D, But im not too sure on how to decide between them. Because Einstein mentioned the sun in his theory which has a very large mass <span> 1.989 x 10 with a exponent of 30 to be exact. Hope this helped though.</span>
If the rod is in rotational equilibrium, then the net torques acting on it is zero:
∑ τ = 0
Let's give the system a counterclockwise orientation, so that forces that would cause the rod to rotate counterclockwise act in the positive direction. Compute the magnitudes of each torque:
• at the left end,
τ = + (50 N) (2.0 m) = 100 N•m
• at the right end,
τ = - (200 N) (5.0 m) = - 1000 N•m
• at a point a distance d to the right of the pivot point,
τ = + (300 N) d
Then
∑ τ = 100 N•m - 1000 N•m + (300 N) d = 0
⇒ (300 N) d = 1100 N•m
⇒ d ≈ 3.7 m