Answer:
The answer is based on the conservation of energy law; something you should really understand by now.
For convenience we can hold one of the two charges still; it becomes the frame of reference. And everything we say is in reference to the designated static charge, call it Q.
So the moving charge, call it q, has total energy TE = PE. It's all potential energy as we start with q not moving.
It has potential energy because in order to separate q from Q, we had to do work, add energy, on q. And from the COE law, that work added is converted into PE.
It's a bit like lifting something off the ground. That's work and it becomes GPE. So there's some work, in separating the two charges in the first place.
But there's more.
Now we let q go. As opposites attract, q is pulled to Q. And that force from Q is working on q, force over distance. Which means the potential energy q started with is being converted into kinetic energy. q is accelerating and picking up speed.
And there's more work, done by the EMF on charge q. That converts the PE into KE and the q charge smashes into Q with some kinetic energy.
<span>The
answer is towards <span>the poles. This is because, at
the poles of the magnet, the magnetic field lines get closer together hence
indicating that the magnetic force is stronger here. The fields are closest
together at the center of the magnet and farthest at the outside side of the
magnet. </span></span>
Based off the periodic table, that would be Iridium.
Answer:
Explanation:
charge on the capacitor = capacitance x potential
= 1.588 x 3.4
= 5.4 C
Energy of capacitor = 1 / 2 C V ² , C is capacitance , V is potential
= .5 x 3.4 x 1.588²
= 4.29 J
If I be maximum current
energy of inductor = 1/2 L I² , L is inductance of inductor .
energy of inductance = Energy of capacitor
1/2 L I² = 4.29
I² = 107.25
I = 10.35 A
Time period of oscillation
T = 2π √ LC
=2π √ .08 X 3.4
= 3.275 s
current in the inductor will be maximum in T / 4 time
= 3.275 / 4
= .819 s.
Total energy of the system
= initial energy of the capacitor
= 4.29 J
Nitrogen has an outer shell with 5 electrons it needs 3 to make 8 and be stable