Answer:
64.7g
Explanation:
The balanced chemical equation of this question is as follows;
AlI + HgCl2 → HgI + AlCl2
Based on the above equation, 1 mole of AlI (aluminum monoiodide) reacts to produce 1 mole of HgI (mercury iodide).
Using mole = mass/molar mass to convert mass of HgI to moles.
Molar mass of HgI = 200.59 + 127
= 327.59g/mol
Mole = 138/327.59
= 0.42mol
- If 1 mole of AlI (aluminum monoiodide) reacts to produce 1 mole of HgI (mercury iodide)
- Then 0.42 mol of HgI will be produced by 0.42mol of AlI.
Using mole = mass/molar mass
Mass = mole × molar mass
Molar mass of AlI = 27 + 127
= 154g/mol
Mass of AlI = 0.42 × 154
= 64.7g of AlI
They're totally unrelated. No matter how low or high the molecular weight, you can always use more or less of it.
Answer:
C2HBr
Explanation:
The empirical formula is like the simpliest form so divide all by 3 and get the above formula.
One mole of NaOH (Sodium hydroxide) is equal to 39.997 grams of NaOH.
Explanation:
Sublimation is defined as a process in which solid state of a substance directly changes into vapor or gaseous state without undergoing liquid phase.
For example, naphthalene balls show sublimation at room temperature.
As this process does not cause any change in chemical composition of a substance. Hence, it is known as a physical process.
Similarly, when
sublimes readily at
. This shows change in physical state of carbon dioxide is taking place, i.e, from solid to gaseous phase.
Thus, we can conclude that when
sublimes readily at
then it means physical properties are usually associated with a compound that undergoes this kind of change.