Answer:
longitudinal waves have those properties
Hello! :)
The focal length of the lens tells you how far away from the lens a focused image is created, if light rays approaching the lens are parallel. A lens with more “bending power” has a shorter focal length, because it alters the path of the light rays more effectively than a weaker lens. Most of the time, you can treat a lens as being thin and ignore any effects from the thickness, because the thickness of the lens is much less than the focal length. But for thicker lenses, how thick they are does make a difference, and in general, results in a shorter focal length.
Hope I helped and didn’t answer too late!
Good luck and stay COOL!
~ Destiny ^_^
Answer:
The correct answer is - Plantae.
Explanation:
Drosera m<em>agnifica</em> is discovered in 2015 for the first time and the characteristics this organism's cell shows are -
- permanent vacuoles
- surrounded by cellulose layer
Vacuoles are present in both Plantae and Animalia kingdom of the eukaryotic organism but in animal cells, there are small and numerous vacuoles present and they are not permanent whereas in plant cells vacuoles are present permanently.
The cell of an animal cell has no surrounding layer other than cell membrane while in the plant cell there is a supporting and protecting layer of cellulose cell wall present.
On the basis of the given characteristics, it is confirmed that the Drosera magnifica belongs to Plantae kingdom.
To solve this problem, we will get f and then we will use it to calculate the power.
So, for this farsighted person,
do = 25 cm and di = -80
Therefore:
1/f = (1/25) + (1/-80) = 0.00275 = 0.275 m
Power = 1/f = 1/0.275 = +3.6363 Diopeters.
This means that the lens is converging.
Answer:
Temperature, T = 1542.10 K
Explanation:
It is given that,
The black body radiation emitted from a furnace peaks at a wavelength of, 
We need to find the temperature inside the furnace. The relationship between the temperature and the wavelength is given by Wein's law i.e.

or

b = Wein's displacement constant



T = 1542.10 K
So, the temperature inside the furnace is 1542.10 K. Hence, this is the required solution.