Answer:
52.5°C
Explanation:
The final enthalpy is determined from energy balance where initial enthalpy and specific volume are obtained from A-12 for the given pressure and state
mh1 + W = mh2
h2 = h1 + W/m
h1 + Wα1/V1
242.9 kJ/kg + 2.35.0.11049kJ/ 0.35/60kg
=287.4 kJ/kg
From the final enthalpy and pressure the final temperature is obtained A-13 using interpolation
i.e T2 = T1 + T2 -T1/h2 -h1(h2 - h1)
= 50°C + 60 - 50/295.15 - 284.79
(287.4 - 284.79)°C
= 52.5°C
Answer:
Explanation:
a )
While breaking initial velocity u = 62.5 mph
= 62.5 x 1760 x 3 / (60 x 60 ) ft /s
= 91.66 ft / s
distance trvelled s = 150 ft
v² = u² - 2as
0 = 91.66² - 2 a x 150
a = - 28 ft / s²
b ) While accelerating initial velocity u = 0
distance travelled s = .24 mi
time = 19.3 s
s = ut + 1/2 at²
s is distance travelled in time t with acceleration a ,
.24 = 0 + 1/2 a x 19.3²
a = .001288 mi/s²
= 2.06 m /s²
c )
If distance travelled s = .25 mi
final velocity v = ? a = .001288 mi / s²
v² = u² + 2as
= 0 + 2 x .001288 x .25
= .000644
v = .025 mi / s
= .0025 x 60 x 60 mi / h
= 91.35 mph .
d ) initial velocity u = 59 mph
= 86.53 ft / s
final velocity = 0
acceleration = - 28 ft /s²
v = u - at
0 = 86.53 - 28 t
t = 3 sec approx .
The rest energy of a particle is

where

is the rest mass of the particle and c is the speed of light.
The total energy of a relativistic particle is

where v is the speed of the particle.
We want the total energy of the particle to be twice its rest energy, so that

which means:


From which we find the ratio between the speed of the particle v and the speed of light c:

So, the particle should travel at 0.87c in order to have its total energy equal to twice its rest energy.
Answer:
(a) The resistance R of the inductor is 2480.62 Ω
(b) The inductance L of the inductor is 1.67 H
Explanation:
Given;
emf of the battery, V = 16.0 V
current at 0.940 ms = 4.86 mA
after a long time, the current becomes 6.45 mA = maximum current
Part (a) The resistance R of the inductor

Part (b) the inductance L of the inductor

where;
L is the inductance
R is the resistance of the inductor
t is time

Therefore, the inductance is 1.67 H