Answer:
1
Explanation:
fluorine's atomic number is 9
electronic configuration: 2,7
so it needs 1 electron to stabilise
that's why 1 covalent bond
hope it helps!!
Answer:
As an example of the processes depicted in this figure, consider a sample of water. When gaseous water is cooled sufficiently, the attractions between H2O molecules will be capable of holding them together when they come into contact with each other; the gas condenses, forming liquid H2O. For example, liquid water forms on the outside of a cold glass as the water vapor in the air is cooled by the cold glass.
Explanation:
Hopefully that helps!
An electron in motion generates an electromagnetic field and is in turn deflected by external electromagnetic fields. When an electron is accelerated, it can absorb or radiate energy in the form of photons. Electrons, together with atomic nuclei made up of protons and neutrons, make up the
Answer:
1.26*10²³ particles are present in 12.47 grams of NaCl
Explanation:
Avogadro's Number or Avogadro's Constant is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023 * 10²³ particles per mole. The Avogadro number applies to any substance.
So, first of all you must know the amount of moles that represent 12.47 grams of NaCl. For that it is necessary to know the molar mass.
You know:
- Na: 23 g/mole
- Cl: 35.45 g/mole
So the molar mass of NaCl is: 23 g/mole + 35.45 g/mole= 58.45 g/mole
Now you apply a rule of three as follows: if 58.45 grams are present in 1 mole of NaCl, 12.47 grams in how many moles will they be?

moles= 0.21
You apply a rule of three again, knowing Avogadro's number: if in 1 mole of NaCl there are 6,023 * 10²³ particles, in 0.21 moles how many particles are there?

number of particles= 1.26*10²³
<u><em>1.26*10²³ particles are present in 12.47 grams of NaCl</em></u>
<u><em></em></u>