Question:
A particle moving along the x-axis has a position given by x=(24t - 2.0t³)m, where t is measured in s. What is the magnitude of the acceleration of the particle at the instant when its velocity is zero
Answer:
24 m/s
Explanation:
Given:
x=(24t - 2.0t³)m
First find velocity function v(t):
v(t) = ẋ(t) = 24 - 2*3t²
v(t) = ẋ(t) = 24 - 6t²
Find the acceleration function a(t):
a(t) = Ẍ(t) = V(t) = -6*2t
a(t) = Ẍ(t) = V(t) = -12t
At acceleration = 0, take time as T in velocity function.
0 =v(T) = 24 - 6T²
Solve for T
Substitute -2 for t in acceleration function:
a(t) = a(T) = a(-2) = -12(-2) = 24 m/s
Acceleration = 24m/s
Answer:
huger
Explanation:
Every living organisms would always need food because of the need for survival. Therefore, there's no human body positioning that specifies no need for food. E.g we can stand and still take in food; sit and eat, just to mention a few.
Usually, Scientists use "Parallax Method" in order to determine the different positions of an object
Hope this helps!
Answer:
45000kgm/s due east
Explanation:
Given parameters:
Mass of the car = 1.5 x 10³kg
Velocity = 30m/s
Time taken = 60s
Unknown:
Momentum = ?
Solution:
Momentum is the quantity of motion a body possess,
Momentum = mass x velocity
So;
Momentum = 1.5 x 10³ x 30 = 45000kgm/s due east
Answer:
θr = 55.2 °
Explanation:
The law of reflection states that the angle of incidence and the angles of reflection is the same.
Let's use trigonometry to find the angle between the reflected ray, where the horizontal distance x = 55.9 cm and the vertical distance is y = 38.9 cm
tan θ = y / x
tan θ = 38.9 / 55.9
θ = tan⁻¹ (0.6959)
θ = 34.8°
This angle is measured with respect to the x-axis (horizontal), but in general the angles in optics are measured from the y-axis so that the angle is
θ = 90 - 34.8
θr = 55.2 °