Answer:
0.08kg/s
Explanation:
For this problem you must use 2 equations, the first is the continuity equation that indicates that all the mass flows that enter is equal to those that leave the system, there you have the first equation.
The second equation is obtained using the first law of thermodynamics that indicates that all the energies that enter a system are the same that come out, you must take into account the heat flows, work and mass flows of each state, as well as their enthalpies found with the temperature.
finally you use the two previous equations to make a system and find the mass flows
I attached procedure
Answer:
the volume of water that will be required to bring these soils to the optimum moisture content is 1859 kL
Explanation:
Given that;
volume of cut = 25,100 m³
Volume of dry soil fill = 23,300 m³
Weight of the soil will be;
⇒ 93% × 18.3 kN/m³ × 23,300 m³
= 0.93 × 426390 kN 3
= 396,542.7 kN
Optimum moisture content = 12.9 %
Required amount of moisture = (12.9 - 8.3)% = 4.6 %
So,
Weight of water required = 4.6% × 396,542.7 = 18241 kN
Volume of water required = 18241 / 9.81 = 1859 m³
Volume of water required = 1859 kL
Therefore, the volume of water that will be required to bring these soils to the optimum moisture content is 1859 kL
Answer:
a) 280MPa
b) -100MPa
c) -0.35
d) 380 MPa
Explanation:
GIVEN DATA:
mean stress 
stress amplitude 
a) 
--------------1

-----------2
solving 1 and 2 equation we get

b) 
c)
stress ratio

d)magnitude of stress range

= 280 -(-100) = 380 MPa
I’m a concrete mason myself and I can tell you it is a pain in the butt to Roto hammer a hole into the concrete to put the pipe in it’s a lot easier to just pour the concrete around it