Answer:
25.907°C
Explanation:
In Exercise 102, heat capacity of bomb calorimeter is 6.660 kJ/°C
The heat of combustion of benzoic acid is equivalent to the total heat energy released to the bomb calorimeter and water in the calorimeter.
Thus:

= heat of combustion of benzoic acid
= heat energy released to water
= heat energy released to the calorimeter
Therefore,
![-m_{combust}*H_{combust} = [m_{water}*c_{water} + C_{calori}]*(T_{f} - T_{i})](https://tex.z-dn.net/?f=-m_%7Bcombust%7D%2AH_%7Bcombust%7D%20%3D%20%5Bm_%7Bwater%7D%2Ac_%7Bwater%7D%20%2B%20C_%7Bcalori%7D%5D%2A%28T_%7Bf%7D%20-%20T_%7Bi%7D%29)
1.056*26.42 = [0.987*4.18 + 6.66](
- 23.32)
27.8995 = [4.12566+6.660](
- 23.32)
(
- 23.32) = 27.8995/10.7857 = 2.587
= 23.32 + 2.587 = 25.907°C
I think the best answer from the choices listed above is option B. The best graduated cylinder for this case is the glass cylinder. A metal cylinder is not possible because you cannot measure really since metals are not transparent. A plastic cylinder cannot also be used since the substance should be heated for the experiment.
<h3>Haber - Bosch process, method of directly synthesizing ammonia from hydrogen... The reaction is carried out at pressure ranging from 200 to 400 atmosphere's</h3>
sana maka tulong ❣️
6.4 times 10^-7 is the answer because you are moving your decimal places to the left so it will be negative 7
Answer:
does google have an answer