This question may only be ansewered by frequent mattrrs
Answer:

![[H^+]=5x10^{-13}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D5x10%5E%7B-13%7DM)
![[OH^-]=0.02M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.02M)
Explanation:
Hello there!
In this case, according to the given ionization of magnesium hydroxide, it is possible for us to set up the following reaction:

Thus, since the ionization occurs at an extent of 1/3, we can set up the following relationship:
![\frac{1}{3} =\frac{x}{[Mg(OH)_2]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B3%7D%20%3D%5Cfrac%7Bx%7D%7B%5BMg%28OH%29_2%5D%7D)
Thus, x for this problem is:
![x=\frac{[Mg(OH)_2]}{3}=\frac{0.03M}{3}\\\\x= 0.01M](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B%5BMg%28OH%29_2%5D%7D%7B3%7D%3D%5Cfrac%7B0.03M%7D%7B3%7D%5C%5C%5C%5Cx%3D%20%200.01M)
Now, according to an ICE table, we have that:
![[OH^-]=2x=2*0.01M=0.02M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D2x%3D2%2A0.01M%3D0.02M)
Therefore, we can calculate the H^+, pH and pOH now:
![[H^+]=\frac{1x10^{-14}}{0.02}=5x10^{-13}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5Cfrac%7B1x10%5E%7B-14%7D%7D%7B0.02%7D%3D5x10%5E%7B-13%7DM)

Best regards!
It looks like it is going by 25's so I would say 22.75 mL
Moss can grow abundantly in an environment with favorable conditions. They usually grow abundantly in cool, moist and dark places. If not dark, they prefer shady areas. Also, they tend to grow in acidic soil with pH range between 5.0-5.5.