Answer:
An exothermic reaction releases energy. Endothermic takes in energy.
Explanation:
Answer:
Q = 5555.6J
Explanation:
Mass of glass piece, m = 453g
initial temperature = 25.7°C
temperature to be attained = 40.3°C
⇒change in temperature, Δt = 40.3 - 25.7 = 14.6°C
specific heat of glass, s = 0.840J/g°C
Heat absorbed, Q = msΔt
⇒Q = 453×0.840×14.6 = 5555.592J
⇒<u>Q = 5555.6J</u> (rounded to the nearest tenth)
Answer:
It would be compound.
Explanation:
It is this way because if it adds another proton it becomes more positive that nuetral, and if you add an electron it just makes the atom more dense. That is why the answer is compound. Hope this helped :)
Answer:
0.297 °C
Step-by-step explanation:
The formula for the <em>freezing point depression </em>ΔT_f is
ΔT_f = iK_f·b
i is the van’t Hoff factor: the number of moles of particles you get from a solute.
For glucose,
glucose(s) ⟶ glucose(aq)
1 mole glucose ⟶ 1 mol particles i = 1
Data:
Mass of glucose = 10.20 g
Mass of water = 355 g
ΔT_f = 1.86 °C·kg·mol⁻¹
Calculations:
(a) <em>Moles of glucose
</em>
n = 10.20 g × (1 mol/180.16 g)
= 0.056 62 mol
(b) <em>Kilograms of water
</em>
m = 355 g × (1 kg/1000 g)
= 0.355 kg
(c) <em>Molal concentration
</em>
b = moles of solute/kilograms of solvent
= 0.056 62 mol/0.355 kg
= 0.1595 mol·kg⁻¹
(d) <em>Freezing point depression
</em>
ΔT_f = 1 × 1.86 × 0.1595
= 0.297 °C