We can conclude that star A is closer to us than star B.
In fact, the absolute magnitude gives a measure of the brightness of the star, if all the stars are placed at the same distance from Earth. So, it's a measure of the absolute luminosity of the star, indipendently from its distance from us: since the two stars have same absolute magnitude, it means that if they were at same distance from Earth, they would appear with same luminosity. Instead, we see star A brighter than star B, and the only explanation is that star A is closer to Earth than star B (the closer the star A, the brigther it is)
Answer:
The temperature is 2541.799 K
Explanation:
The formula for black body radiation is given by the relation;
Q = eσAT⁴
Where:
Q = Rate of heat transfer 56.6
σ = Stefan-Boltzman constant = 5.67 × 10⁻⁸ W/(m²·k⁴)
A = Surface area of the cube = 6×(3.72 mm)² = 8.3 × 10⁻⁵ m²
e = emissivity = 0.288
T = Temperature
Therefore, we have;
T⁴ = Q/(e×σ×A) = 56.6/(5.67 × 10⁻⁸ × 8.3 × 10⁻⁵ × 0.288) = 4.174 × 10¹⁴ K⁴
T = 2541.799 K
The temperature = 2541.799 K.
Electrical energy is your answer.
Answer:
Explanation:
on volleyballit's clockwise and What Would Happen If Someone Served Out Of Order? If the wrong player on your team serves because it's not their turn, the point and the possession of the serve will go to your opponents.
Number of barrels are 3.0. Each barrel contains 42 gallons of oil. Thus, total volume of oil will be 42×3=126 gallons.
Converting gallons into m^{3}
1 gallon=0.00378 m^{3}
Thus, 126 gallons=0.4769 m^{3}
Thickness of oil film is 2.5\times 10^{2} nm, converting it into meters as follows:
1 nm=10^{-9} m
Thus,
2.5\times 10^{2} nm=1.5\times 10^{-7}m
Now, volume V of oil is related to area A and thickness T as follows:
V=A×T
rearranging,
A=\frac{V}{T}=\frac{0.4769 m^{3}}{2\times 10^{-7}m}=2.38\times 10^{6}m^{2}
Thus, square meters of oil will be 2.38\times 10^{6}m^{2}