Approximately 15 m/s is the speed of the car.
<u>Explanation:</u>
<u>Given:</u>
speed of sound - 343 m/s
You detect a frequency that is 0.959 times as small as the frequency emitted by the car when it is stationary. So, it can be written as,


If there is relative movement between an observer and source, the frequency heard by an observer differs from the actual frequency of the source. This changed frequency is called the apparent frequency. This variation in frequency of sound wave due to motion is called the Doppler shift (Doppler effect). In general,

Where,
- Observed frequency
f – Actual frequency
v – Velocity of sound waves
– Velocity of observer
- velocity of source
When source moves away from an observer at rest (
), the equation would be



By substituting the known values, we get






Approximately 15 m/s is the speed of the car.
Answer:
3.07 m/s
Explanation:
We know that from kinematics equation
and here, a=g where v is the final velocity, u is the initial velocity, a is acceleration, s is the distance moved, g is acceleration due to gravity
Making u the subject then

Substituting v for 6.79 m/s, s for 1.87 m and g as 9.81 m/s2 then

Answer:
Average speed=1.5 m/s
Frequency of pendulum=93.75Hz
Explanation:
We are given
Frequency, 
Average wavelength =
Speed of pendulum, 
Wavelength, 
We have to find the average speed and frequency of pendulum.
We know that
Speed,
Using the formula
Average speed,
Hence, the average speed =1.5m/s
Frequency, 
Using the formula


Hence, the frequency of a pendulum=93.75Hz