Answer:
Explanation:
Let T be the tension
For linear motion of hoop downwards
mg -T = ma , m is mass of the hoop . a is linear acceleration of CG of hoop .
For rotational motion of hoop
Torque by tension
T x R , R is radius of hoop.
Angular acceleration be α,
Linear acceleration a = α R
So TR = I α
= I a / R
a = TR² / I
Putting this value in earlier relation
mg -T = m TR² / I
mg = T ( 1 + m R² / I )
T = mg / ( 1 + m R² / I )
mg / ( 1 + R² / k² )
Tension is less than mg or weight because denominator of the expression is more than 1.
Answer:
part (a). 176580 J
part (b). 197381 J
Explanation:
Given,
- Density of the chain =

- Length of the chain = L = 60 m
- Acceleration due to gravity = g = 9.81

part (a)
Let dy be the small element of the chain at a distance of 'y' from the ground.
mass of the small element of the chain = 
Work done due to the small element,

Total work done to wind the entire chain = w

part (b)
- mass of the block connected to the chain = m = 35 kg
Total work done to wind the chain = work done due to the chain + work done due to the mass

C is the correct answer beacause it shows where it is happening in this cas “here”.
Answer:
I do I make a brinliest can you please can me
Answer:
The minimum frequency of the coil is 7.1 Hz
Explanation:
Given;
number of turns, N = 200 turns
cross sectional area, A = 300 cm² = 300 x 10⁻⁴ m²
magnitude of magnetic field strength, B = 30 x 10⁻³ T
maximum value of the induced emf, E = 8 V
Maximum induced emf is given as;
E = NBAω
where
ω is angular velocity (ω = 2πf)
E = NBA2πf
where;
f is the minimum frequency, measured in hertz (Hz)
f = E / (NBA2π)
f = 8 / (200 x 30 x 10⁻³ x 300 x 10⁻⁴ x 2 x 3.142)
f = 7.073 Hz
f = 7.1 Hz
Therefore, the minimum frequency of the coil is 7.1 Hz