Answer: 0.082 atm L k^-1 mole^-1
Explanation:
Given that:
Volume of gas (V) = 62.0 L
Temperature of gas (T) = 100°C
Convert 100°C to Kelvin by adding 273
(100°C + 273 = 373K)
Pressure of gas (P) = 250 kPa
[Convert pressure in kilopascal to atmospheres
101.325 kPa = 1 atm
250 kPa = 250/101.325 = 2.467 atm]
Number of moles (n) = 5.00 moles
Gas constant (R) = ?
To get the gas constant, apply the formula for ideal gas equation
pV = nRT
2.467 atm x 62.0L = 5.00 moles x R x 373K
152.954 atm•L = 1865 K•mole x R
To get the value of R, divide both sides by 1865 K•mole
152.954 atm•L / 1865 K•mole = 1865 K•mole•R / 1865 K•mole
0.082 atm•L•K^-1•mole^-1 = R
Thus, the value of gas constant is 0.082 atm L k^-1 mole^-1
Homogeneous mixture because it contains the same properties as homogeneous
Simple!
Atomic number= number of protons AND number of electrons (in an atom)
Mass number= number of neutrons
Moles of Ammonia produced : 4 moles
<h3>Further explanation</h3>
Given
6 mol of H₂
Required
moles of Ammonia
Solution
Reaction
N₂ + 3H₂ → 2NH₃
In chemical equations, the reaction coefficient shows the mole ratio of the reacting compound (reactants and products)
From the equation, mol ratio of H₂ : NH₃ = 3 : 2, so mol NH₃ :
= 2/3 x moles H₂
= 2/3 x 6
= 4 moles
(C.) Each carbon atom in ethane forms 4