You are given the mass of a sphere that is 26 kg sphere and it is released from rest when θ = 0°. You are also given the force of the spring that is F = 100 N. You are asked to find the tension of the spring. Imagine that the sphere is connected to a spring. The spring exerts a tension and the spring exerts gravitational pull. This will follow the second law of newton.
T - F = ma
T = ma + F
T = 26kg (9.81m/s²) + 100 N
T = 355.06 N
Matt Biondi..?
(I don’t know if it’s right, sorry if it is wrong)
:)
A large force is required to accelerate the mass of the bicycle and rider. Once the desired constant velocity is reached, a much smaller force is sufficient to overcome the ever-present frictional forces.
Answer:
Explanation:
A ) When gymnast is motionless , he is in equilibrium
T = mg
= 63 x 9.81
= 618.03 N
B )
When gymnast climbs up at a constant rate , he is still in equilibrium ie net force acting on it is zero as acceleration is zero.
T = mg
= 618.03 N
C ) If the gymnast climbs up the rope with an upward acceleration of magnitude 0.600 m/s2
Net force on it = T - mg , acting in upward direction
T - mg = m a
T = mg + m a
= m ( g + a )
= 63 ( 9.81 + .6)
= 655.83 N
D ) If the gymnast slides down the rope with a downward acceleration of magnitude 0.600 m/s2
Net force acting in downward direction
mg - T = ma
T = m ( g - a )
= 63 x ( 9.81 - .6 )
= 580.23 N