For the answer to the question above, first find out the gradient.
<span>m = rise/run </span>
<span>=(y2-y1)/(x2-x1) </span>
<span>the x's and y's are the points given: "After three hours, the velocity of the car is 53 km/h. After six hours, the velocity of the car is 62 km/h" </span>
<span>(x1,y1) = (3,53) </span>
<span>(x2,y2) = (6,62) </span>
<span>sub values back into the equation </span>
<span>m = (62-53)/(6-3) </span>
<span>m = 9/3 </span>
<span>m = 3 </span>
<span>now we use a point-slope form to find the the standard form </span>
<span>y-y1 = m(x-x1) </span>
<span>where x1 and y1 are any set of point given </span>
<span>y-53 = 3(x-3) </span>
<span>y-53 = 3x - 9 </span>
<span>y = 3x - 9 + 53 </span>
<span>y = 3x + 44 </span>
<span>y is the velocity of the car, x is the time.
</span>I hope this helps.
Answer:
Hindi ko alam pasensya ka ha godbless
The answer is C) rate of change of momentum. The answer is not initial or final momentum as the start and end points are not changing. On the other hand, the time it takes for the ball to change velocity is. This change relates to the change of momentum. Hope this helped :))
The sphere slow down due to friction force between the surface of the sphere and the surface on that the sphere is rolling . The friction force acting against the motion of the sphere. Thats why it is slowed down. In fact not only a sphere, anything can not slow down untill a force act against it's motion.
You are in an early universe.
In the study of the evolution of the universe, it has been determined before Plank time (before the big bang and right after it), the early universe had the following characteristics:
- There was only one single force acting over all that existed.
- The early universe was very hot and dense because all matter had contracted before the big bang.
- Space and time were wrapped.
These characteristics match the ones described, based on this, we can conclude you are in an early universe.
Learn more about universe in: brainly.com/question/9724831