Answer:
The answer is A.
Explanation:
The diagram shows the light ray bending away from the normal. Light rays bend away from the normal when their speed increases. This means that in the diagram, the light ray moves from a medium in which light has a lower speed to a medium in light has a higher speed. The only choice where the speed of light increases from A to B is answer A. So that has to be the answer.
The suns gravitational pull
Answer:
a)

b)

Explanation:
a)
= mass of the asteroid = 43000 kg
= initial speed of asteroid = 7600 m/s
= final speed of asteroid = 5000 m/s
= Work done by the force on asteroid
Using work-change in kinetic energy theorem

b)
= magnitude of force on asteroid
= distance traveled by asteroid while it slows down = 1.4 x 10⁶ m
Work done by the force on the asteroid to slow it down is given as

The sphere’s Electric potential energy is 1.6*
J
Given,
q=6. 5 µc, V=240 v,
We know that sphere’s Electric potential energy(E) = qV=6.5*
=1.6*
J
<h3>Electric potential energy</h3>
The configuration of a certain set of point charges within a given system is connected with the potential energy (measured in joules) known as electric potential energy, which is a product of conservative Coulomb forces. Two crucial factors—its inherent electric charge and its position in relation to other electrically charged objects—can determine whether an object has electric potential energy.
In systems with time-varying electric fields, the potential energy is referred to as "electric potential energy," but in systems with time-invariant electric fields, the potential energy is referred to as "electrostatic potential energy."
A tiny sphere carrying a charge of 6. 5 µc sits in an electric field, at a point where the electric potential is 240 v. what is the sphere’s potential energy?
Learn more about Electric potential energy here:
brainly.com/question/24284560
#SPJ4