Answer:
The final charges of each sphere are: q_A = 3/8 Q
, q_B = 3/8 Q
, q_C = 3/4 Q
Explanation:
This problem asks for the final charge of each sphere, for this we must use that the charge is distributed evenly over a metal surface.
Let's start Sphere A makes contact with sphere B, whereby each one ends with half of the initial charge, at this point
q_A = Q / 2
q_B = Q / 2
Now sphere A touches sphere C, ending with half the charge
q_A = ½ (Q / 2) = ¼ Q
q_B = ¼ Q
Now the sphere A that has Q / 4 of the initial charge is put in contact with the sphere B that has Q / 2 of the initial charge, the total charge is the sum of the charge
q = Q / 4 + Q / 2 = ¾ Q
This is the charge distributed between the two spheres, sphere A is 3/8 Q and sphere B is 3/8 Q
q_A = 3/8 Q
q_B = 3/8 Q
The final charges of each sphere are:
q_A = 3/8 Q
q_B = 3/8 Q
q_C = 3/4 Q
Answer:
39.2m/s
Explanation:
The potential energy the book has right before it falls is equal to the kinetic energy in falling.
PE = KE
mgh = (1/2)mv
2gh=v
v=(2)(9.81)(2)
v=39.24m/s
Answer: Option D: 5.5×10²Joules
Explanation:
Work done is the product of applied force and displacement of the object in the direction of force.
W = F.s = F s cosθ
It is given that the force applied is, F = 55 N
The displacement in the direction of force, s = 10 m
The angle between force and displacement, θ = 0°
Thus, work done on the object:
W = 55 N × 10 m × cos 0° = 550 J = 5.5 × 10² J
Hence, the correct option is D.
I think it might be A. I’m sorry if I’m wrong