An ideal gas is defined as one in which all collisions between atoms or molecules are perfectly eleastic and in which there are no intermolecular attractive forces. One can visualize it as a collection of perfectly hard spheres which collide but which otherwise do not interact with each other.
Happy to help
Answer:
Hot material near Earth's surface is more dense and sinks, and when it cools, it becomes less dense and rises.
Explanation:
Convection is a process by which less dense material rises and more dense material sinks near Earth's surface. Water, air, rocks and other materials expands when temperature rises and they become less dense. When the water is heated it becomes vapors and carries away thermal energy from the water.
Answer:
1.47 atm
Explanation:
Step 1: Given data
- Initial volume (V₁): 32.4 L
- Initial pressure (P₁): 1 atm (standard pressure)
- Initial temperature (T₁): 273 K (standard temperature)
- Final volume (V₂): 28.4 L
- Final temperature (T₂): 352 K
Step 2: Calculate the final pressure of the gas
We can calculate the final pressure of the gas using the combined gas law.
P₁ × V₁ / T₁ = P₂ × V₂ / T₂
P₂ = P₁ × V₁ × T₂ / T₁ × V₂
P₂ = 1 atm × 32.4 L × 352 K / 273 K × 28.4 L = 1.47 atm
Answer:
See explanation and image attached
Explanation:
A bond line structure refers to any structure of a covalent molecule wherein the covalent bonds present in the molecule are represented with a single line for each level of bond order.
The bond-line structure of CH3CH2O(CH2)2CH(CH3)2 has been shown in the image attached. We know that oxygen has a lone pair of electrons and this has been clearly shown also in the image attached.