1.Use the balance to find the mass of the object. Record the value on the "Density Data Chart."
2.Pour water into a graduated cylinder up to an easily-read value, such as 50 milliliters and record the number.
3.Drop the object into the cylinder and record the new value in millimeters.
4.The difference between the two numbers is the object's volume. Remember that 1 milliliter is equal to 1 cubic centimeter. Record the volume on the data chart.
5.Compute the density of the object by dividing the mass value by the volume value. Record the density on the data chart.
Answer:
The metal will melt but their will be no change in temperature.
Explanation:
The metal is at its melting temperature which means it is still in solid phase but have to cross the enthalpy of its condensation at this same temperature to convert into liquid phase.
<u>On supplying heat, the metal's temperature will not change as the heat will be required as enthalpy of condensation to melt the solid to liquid at the melting temperature.</u>
Answer:
Part a)
T = 3.96 s
Part b)
T = 1.98 s
Part c)
T = 2.8 s
Explanation:
As we know that time period of spring block system is given as

T = 2.8 s
Part a)
If the mass of the block attached is doubled
then we will have



Part b)
If the spring constant is doubled
then we have



Part c)
If the amplitude is halved but mass and spring constant will remain the same
so here we know that time period does not depends on Amplitude
so we will have

T = 2.8 s