I found this on google
“The periodic table is important because its is organized to provide a great deal of information about elements and how they relate to one another in one-easy-to-use reference. The table can be used to predict the properties of elements, even those that have not been discovered.”
I hope this helps
Scientists expected that the law of conservation of mass would apply to nuclear fission in terms of the masses of the subatomic particles. In reality, the mass of an atom is not equal to the sum of the masses of the subatomic particles that make it up. This is because of the energy that binds the subatomic particles. This energy has mass and when the bond is broken, the mass of the energy of the bonds is lost resulting to what we now cal, a mass defect.
With all of the information given (pressure, volume, temperature, and the molar mass), we need a formula that relates this all together. The formula we need is the ideal gas law, PV=nRT. Since the pressure is defined in millimeters of mercury, we need the R value that correlates with this, which is 62.4; on top of this, we need the temperature in Kelvin - simply add 273.15 to convert from Celsius. With all of this information, simply plug-and-chug:
PV=nRT
(800)(3.7) = n(62.4)(37 + 273.15)
n = 0.1529 moles
Finally, the problem is asking the amount of air in grams. We have moles, so all we need to do is multiply that value by the molar mass.
0.1529 moles x 29 grams per mole =
4.435 grams of air
The balloon has 4.435 grams of air inside it.
Hope this helps!
The reaction described above is the formation of an acetal. The initial starting material has a central carbonyl and two terminal alcohol functional groups. In the presence of acid, the carbonyl will become protonated, making the carbon of the carbonyl susceptible to nucleophilic attack from one of the alcohols. The alcohol substitutes onto the carbon of the carbonyl to provide us with the intermediate shown.
The intermediate will continue to react in the presence of acid and the -OH that was once the carbonyl will become protonated, turning it into a good leaving group. The protonated alcohol leaves and is substituted by the other terminal alcohol to give the final acetal product. The end result of the overall reaction is the loss of water from the original molecule to give the spiroacetal shown in the image provided.