The volume of the unit cell is 2.67 x 10⁻²⁸ m³.
<h3>What is the volume of a unit cell of a body-centered cubic crystal?</h3>
In a body-centered cubic unit cell, the volume occupied by the particles of the substance is about 68% of the total unit cell.
Assuming that a single atomic a sphere, the volume is:
Volume(atom) = 4/3 x π x r³
Volume(atom) = 4/3 x π x (169 x 10⁻¹²)³
Volume(atom) = 2.02 x 10⁻²⁹ m³
There are a total of 9 atoms in a body-centered unit cell, so the total volume occupied by atoms is:
2.02 x 10⁻²⁹ x 9
= 1.82 x 10⁻²⁸ m³
Volume of cell = (1.15 x 10⁻²⁸ ) / 0.68
Volume of cell = 2.67 x 10⁻²⁸ m³
Therefore, the volume of the unit cell is 2.67 x 10⁻²⁸ m³.
Learn more volume of unit cells at: brainly.com/question/1594030
#SPJ1
Explanation:
What happens during gas exchange in the alveoli?
These are called alveoli. They inflate when a person inhales and deflate when a person exhales. During gas exchange oxygen moves from the lungs to the bloodstream. At the same time carbon dioxide passes from the blood to the lungs.
What is the role of alveoli in gas exchange?
The alveoli are where the lungs and the blood exchange oxygen and carbon dioxide during the process of breathing in and breathing out. Oxygen breathed in from the air passes through the alveoli and into the blood and travels to the tissues throughout the body.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The concentration equilibrium constant is 
Explanation:
The chemical equation for this decomposition of ammonia is
↔ 
The initial concentration of ammonia is mathematically represented a
![[NH_3] = \frac{n_1}{V_1} = \frac{29}{75}](https://tex.z-dn.net/?f=%5BNH_3%5D%20%3D%20%20%5Cfrac%7Bn_1%7D%7BV_1%7D%20%20%3D%20%5Cfrac%7B29%7D%7B75%7D)
![[NH_3] = 0.387 \ M](https://tex.z-dn.net/?f=%5BNH_3%5D%20%3D%200.387%20%20%5C%20%20M)
The initial concentration of nitrogen gas is mathematically represented a
![[N_2] = \frac{n_2}{V_2}](https://tex.z-dn.net/?f=%5BN_2%5D%20%3D%20%20%5Cfrac%7Bn_2%7D%7BV_2%7D)
![[N_2] = 0.173 \ M](https://tex.z-dn.net/?f=%5BN_2%5D%20%3D%20%200.173%20%20%5C%20%20M)
So looking at the equation
Initially (Before reaction)


During reaction(this is gotten from the reaction equation )
(this implies that it losses two moles of concentration )
(this implies that it gains 1 moles)
(this implies that it gains 3 moles)
Note : x denotes concentration
At equilibrium


Now since
![[NH_3] = 0.387 \ M](https://tex.z-dn.net/?f=%5BNH_3%5D%20%3D%200.387%20%20%5C%20%20M)
Now the equilibrium constant is
![K_c = \frac{[N_2][H_2]^3}{[NH_3]^2}](https://tex.z-dn.net/?f=K_c%20%20%3D%20%20%5Cfrac%7B%5BN_2%5D%5BH_2%5D%5E3%7D%7B%5BNH_3%5D%5E2%7D)
substituting values


Answer:
Pre-zygotic, temporal separation
Explanation:
Reproductive isolation mechanism is of two types:
- Prezygotic mechanism
- Postzygotic mechanism
Prezygotic mechanism isolation occurs before fertilization and helpful in preventing formation of fertile offspring.
In frog external fertilization occurs. In the external fertilization, eggs and sperms are released in water and fertilization occur outside the water.
Prezygotic isolating mechanisms may include behavioral isolation, temporal isolation, mechanical isolation, gametic isolation and habitat isolation.
Temporal separation in reproduction is the sexual activity in the same geographical range but in different periods.
Therefore, the given reproductive isolation is pre-zygotic, temporal separation.
Answer:2817.8
Explanation:multiply the value by 365