1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sidana [21]
2 years ago
10

How can gravity be simulated in an orbiting space station?.

Physics
1 answer:
Alex777 [14]2 years ago
6 0

Answer:

A spinning space station will have centrifugal force acting on the inhabitants which if adjusted right can simulate the force of gravity on Earth

Explanation:

You might be interested in
Greg is in a bike race. at mile marker four (out of ten), his speed was measured at 13.5 mph. which best describes the measured
posledela
The instantaneous speed. 
3 0
3 years ago
Read 2 more answers
Which statement is correct? Theories are accepted as true when a single experiment yields similar results to another one. When a
levacccp [35]
The third statement is correct.

3 0
3 years ago
Read 2 more answers
A rock is thrown straight down, not dropped, from the roof of a building that is 61 m above the ground. If it takes 3.1 s to rea
PtichkaEL [24]
Hiii !!!
I am sending the soluction !!!

If you have any question, let me now =)

Jorge:)

4 0
3 years ago
4. A ball is thrown vertically upward from the ground with a velocity of 30m/s. (a) how long will it take to rise to the highest
yarga [219]

All the answers are:

a) The time that will it take to rise to the highest point is 3.06 seconds.

b) The ball will rise to a height of 45.87 meters.

c) The time at which the ball will have a velocity of 10 m/s upward is 2.04 seconds.

The time when the ball has 10 m/s downward is 1.02 seconds.

d) The displacement of the ball will be zero at 6.12 seconds.

e) The time when the magnitude of the ball's velocity is equal to half its velocity of projection is 1.53 seconds.

f) The ball's displacement is equal to half the maximum height to which it rises after 0.90 seconds.

g) In each moment (upward and downward) the magnitude of the acceleration is the value of g (9.81 m/s²) and is a vector in the negative y-direction.

Let's calculate the values for each case.

a) At the highest point, the final velocity is 0, so we can use the following equation.  

v_{f}=v_{i}-gt (1)

Where:

  • v(i) is the initial velocity
  • v(f) is the final velocity
  • g is the acceleration due to gravity (9.81 m/s²)

We know that v(i) = 30 m/s.

0=30-9.81t

Solve it for t:

t=3.06\: s

Hence, the time is 3.06 s.

b) At the highest point, the final velocity is 0, so we can use the following equation.  

v_{f}^{2}=v_{i}^{2}-2gh (2)

0=v_{i}^{2}-2gh

We know that the initial velocity is 30 m/s.

0=30^{2}-2gh

Solving it for h we have:  

h=\frac{30^{2}}{2*9.81}

h=45.87 \: m

Then, the height is 45.87 m.

c) Using equation (1) we can find the time (t).

10=30-(9.81t)

So, the time elapsed to get 10 m/s is:

t_{upward}=2.04\: s

We know the upward time is equal to the downward time. So the time from v=10 m/s to v=0 m/s will be.

t_{upward}=2.04+t  

t=1.02\: s

This is the time when the ball has 10 m/s downward.          

Therefore, the time upward is 2.04 s, and the time downward is 1.02 s.

d) It will be when the ball returns to the ground.

t=2t_{upward}

t=2*3.06      

t=6.12\: s

The displacement will be zero after 6.12 s.  

e) Here we need to find the time when v(f) is 15 m/s

15=30-gt

t=\frac{15}{9.81}  

t=1.53\: s

The time when the v(f) is 15 m/s is 1.53 s.

f) Here, we need to find t when h = 45.87/2 m = 22.94 m

We can use the next equation:

[tex]h=v_{i}t-0.5gt^{2}/tex]

[tex]22.94=30t-0.5*9.81*t^{2}/tex]

Solving this quadratic equation, t will be:

[tex]t=0.90\: s/tex]

Hence, the ball's displacement is equal to half the maximum h, at 0.90 s.

g) In each moment the magnitude of the acceleration is the value of g (9.81 m/s²) and is a vector in the negative y-direction.

Learn more about vertical motion here:

brainly.com/question/13966860

I hope it helps you!

3 0
3 years ago
A ball is kicked horizontally from a 60 meter tall cliff at 10 m/s. How far from
o-na [289]

Hi there!

We can begin by deriving the equation for how long the ball takes to reach the bottom of the cliff.

\large\boxed{\Delta d = v_it+ \frac{1}{2}at^2}}

There is NO initial vertical velocity, so:

\large\boxed{\Delta d= \frac{1}{2}at^2}}

Rearrange to solve for time:

2\Delta d = at^2\\\\t = \sqrt{\frac{2\Delta d}{g}}

Plug in the given height and acceleration due to gravity (g ≈ 9.8 m/s²)

t = \sqrt{\frac{2(60)}{(9.8)}} = 3.5 s

Now, use the following for finding the HORIZONTAL distance using its horizontal velocity:

\large\boxed{d_x = vt}\\\\d_x = 10(3.5) = \karge\boxed{35 m}

6 0
3 years ago
Other questions:
  • Factor 72x^2 - 8/9<br><br> If you can, please show the steps to solve!
    5·1 answer
  • What two measurements are necessary for calculating velocity?
    5·1 answer
  • what are geology,astronomy,and physics is the answer hypothesis,scientific inquiries,scientific discplines,or protocols?
    15·1 answer
  • How do stars, like our sun, release energy? Is it fission or fusion?
    13·2 answers
  • Please help it’s urgent!
    5·1 answer
  • Determine the voltage of source v2 in order for a 50a current to be delivered to the 0.5 ohm load resistor.
    14·1 answer
  • Is frequent anger a problem for you? If so, what strategies could you try to<br> overcome it?
    5·1 answer
  • A ball filled with an unknown material starts from rest at the top of a 2 m high incline that makes a 28o with respect to the ho
    5·1 answer
  • When a wave is bent by traveling from one medium to another
    13·2 answers
  • Please help me with part 2. Will give brainliest
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!