1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irinina [24]
2 years ago
12

Blake stands in a canoe in the middle of a lake. The canoe is stationary. Blake holds an anchor mass of 15 kg, then throws it we

st with a speed of 8 m/s. Blake and the canoe have a combined mass of 135 kg.
a. the system is defined as Blake, the canoe, and the anchor. What is the total momentum of the system before he throws the anchor?
b. what is the total momentum of the system after he throws the anchor?
c. what is the velocity of the canoe after he throws the anchor?
Physics
1 answer:
Inessa05 [86]2 years ago
5 0

The velocity of the canoe is  1.7 m/s.

<h3>What is momentum?</h3>

Momentum in physics is the products of mass and velocity. Now we have to find momentum with the formula; p = mv

a) Initial momentum = (15)8 m/s + 135 = 255 Kgms-1

b) Since momentum is conserved, the total momentum after throwing the anchor is still 255 Kgms-1

c) The final velocity of the boat is obtained from;

255 Kgms-1 = (15Kg + 135 Kg) v

v = 255 Kgms-1/(15Kg + 135 Kg)

v = 1.7 m/s

Learn more about momentum: brainly.com/question/904448

You might be interested in
Calculate the force of gravity on the 0.60- kg mass if it were 1.3×107 m above Earth's surface (that is, if it were three Earth
nignag [31]
The gravitational force between two objects is given by:
F=G \frac{m_1 m_2}{r^2}
where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is their separation

In this problem, the first object has a mass of m_1=0.60 kg, while the second "object" is the Earth, with mass m_2=5.97 \cdot 10^{24}kg. The distance of the object from the Earth's center is r=1.3 \cdot 10^7 m; if we substitute these numbers into the equation, we find the force of gravity exerted by the Earth on the mass of 0.60 kg:
F=G \frac{m_1m_2}{r^2}=(6.67\cdot 10^{-11}) \frac{(0.60 kg)(5.97 \cdot 10^{24} kg)}{(1.3 \cdot 10^7 m)^2}=  1.41 N
5 0
3 years ago
You drop a steel ball bearing, with a radius of 2.40 mm, into a beaker of honey. Note that honey has a viscosity of 6.00 Pa/s an
Stells [14]

Answer:

The “terminal speed” of the ball bearing is 5.609 m/s

Explanation:

Radius of the steel ball R = 2.40 mm

Viscosity of honey η = 6.0 Pa/s

\text { Viscosity has Density } \sigma=1360 \mathrm{kg} / \mathrm{m}^{3}

\text { Steel has a density } \rho=7800 \mathrm{kg} / \mathrm{m}^{3}

\left.\mathrm{g}=9.8 \mathrm{m} / \mathrm{s}^{2} \text { (g is referred to as the acceleration of gravity. Its value is } 9.8 \mathrm{m} / \mathrm{s}^{2} \text { on Earth }\right)

While calculating the terminal speed in liquids where density is high the stokes law is used for viscous force and buoyant force is taken into consideration for effective weight of the object. So the expression for terminal speed (Vt)

V_{t}=\frac{2 \mathrm{R}^{2}(\rho-\sigma) \mathrm{g}}{9 \eta}

Substitute the given values to find "terminal speed"

\mathrm{V}_{\mathrm{t}}=\frac{2 \times 0.0024^{2}(7800-1360) 9.8}{9 \times 6}

\mathrm{V}_{\mathrm{t}}=\frac{0.0048 \times 6440 \times 9.8}{54}

\mathrm{V}_{\mathrm{t}}=\frac{302.9376}{54}

\mathrm{V}_{\mathrm{t}}=5.609 \mathrm{m} / \mathrm{s}

The “terminal speed” of the ball bearing is 5.609 m/s

7 0
3 years ago
It says find the slope for each line I'm stuck on number one can you help me
Allushta [10]
\text{slope}=\frac{y_2-y_1}{x_2-x_1}

(-2, -1)(3, 1)

Therefore,

\text{slope}=\frac{1-(-1)}{3-(-2)}=\frac{1+1}{3+2}=\frac{2}{5}

7 0
1 year ago
Two parallel plates are 1 cm apart and are connected to a 500 V source. What force will be exerted on a single electron half way
VladimirAG [237]

Answer: 8*10^-15 N

Explanation: In order to calculate the force applied on an electron in the middle of the two planes at 500 V we know that,  F=q*E

The electric field between  the plates is given by:

E = ΔV/d = 500 V/0.01 m=5*10^3 N/C

the force applied to the electron is: F=e*E=8*10^-15 N

3 0
3 years ago
What is most likely the author’s motive for writing this article? to get you to buy sports products to get you to support nuclea
harina [27]

To get you to aooreciate the benefits of atomic reaserch

i know this cause i just had the question and i got it right

4 0
3 years ago
Read 2 more answers
Other questions:
  • What happens to the total mass of a substance undergoing a physical change?
    7·1 answer
  • Speed is a vector quantity
    11·1 answer
  • A ray diagram without the produced image is shown.
    5·1 answer
  • Match each item to its best description.
    6·2 answers
  • Help on springs,I klai
    5·1 answer
  • Which kind of intermolecular force attracts the stearate ion to the oil drop?
    10·1 answer
  • A car is moving from rest and the velocity increases to 30 m/s in 4 seconds. Calculate its acceleration.
    14·1 answer
  • How long will it take to travel 2000 Km at 500 Km<br> a.100,000 hr<br> b.2500 Km<br> c.4 hr
    14·1 answer
  • How are dams made do they just freeze time?
    7·2 answers
  • What is radiation produces a wave full energy.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!