A.) Heat, light, or sound.
Explanation :
As we know that Mendeleev arranged the elements in horizontal rows and vertical columns of a table in order of their increasing relative atomic weights.
He placed the elements with similar nature in the same group.
According to the question, the atomic weight of iodine is less than the atomic weight of tellurium. So according to this, iodine should be placed before tellurium in Mendeleev's tables. But Mendeleev placed iodine after tellurium in his original periodic table.
However, iodine has similar chemical properties to chlorine and bromine. So, in order to make iodine queue up with chlorine and bromine in his periodic table, Mendeleev exchanged the positions of iodine and tellurium.
As we know that the positions of iodine and tellurium were reversed in Mendeleev's table because iodine has one naturally occurring isotope that is iodine-127 and tellurium isotopes are tellurium-128 and tellurium-130.
Due to high relative abundance of tellurium isotopes gives tellurium the greater relative atomic mass.
Answer:
One Hundred
Explanation:
Its a hundredth of a liter which means it takes a hundred of the to equal a full liter
Answer:
<u>The complete question is:</u>
A researcher is using a small molecule inhibitor to manipulate a signaling pathway. This inhibitor prevents phosphorylation and most likely targets
a: phosphatase.
b: ligand-gated ion channel.
c: G protein-coupled receptor.
d: G-protein.
e: receptor kinase.
<u>The correct answer is:</u>
e: receptor kinase.
Explanation:
Kinase is the enzyme that add phosphate groups by transferring them from molecules having high energy (i.e. ATP) to target compound and the process of adding phosphate groups to the target compound is called phosphorylation.
In light of the above explanation, it is clear that kinase is the type of enzyme that involves in phosphorylation therefore, if an inhibitor prevents phosphorylation, it will automatically targets receptor kinase to inhibit the process of phosphorylation.