Answer:
low-spin complexes contain the maximum number of unpaired electrons.
Explanation:
In the crystal field theory, the magnitude of crystal field splitting and the pairing energy determines whether a complex will be low spin or high spin.
Low spin complexes often have greater magnitude of crystal field splitting energy than low spin complexes.
High spin complexes have maximum number of unpaired electrons(most of the electrons are unpaired) while low spin complexes have a minimum number of unpaired electrons in a complex(most of the electrons are paired).
For the reaction below at dynamic equilibrium, it is true that the rate of the forward reaction equals the rate of the reverse reaction.
Let's consider the following reaction at equilibrium.
N₂(g) + 3 H₂(g) = 2 NH₃(g)
<h3>What is the chemical equilibrium?</h3>
Is a state in which the concentrations of reactants and products are constant and the forward reaction rate and constant reaction rate are equal.
<h3>What is the equilibrium constant?</h3>
The equilibrium constant (K) is the ratio of the concentrations of the products to the concentrations of the reactants, all raised to their stoichiometric coefficients.
Let's consider which statement is true for the equilibrium system.
- The concentration of NH₃ is greater than the concentration of N₂. FALSE. There is not enough information to confirm this, we would need to know the value of K.
- The concentration of NH₃ equals the concentration of N₂. FALSE. There is not enough information to confirm this, we would need to know the value of K.
- The rate of the forward reaction equals the rate of the reverse reaction. TRUE. This is always true for a reaction at equilibrium.
- The rate of the forward reaction is greater than the rate of the reverse reaction. FALSE. At equilibrium, both rates are equal.
For the reaction below at dynamic equilibrium, it is true that the rate of the forward reaction equals the rate of the reverse reaction.
Learn more about chemical equilibrium here: brainly.com/question/5081082
Answer:
It is an ether so the nomenclature rule for naming the above compound will be:Alkoxy alkane , generally Alkoxy represent the smaller alkyl group and as in the above question both the alkyl group are same so it's IUPAC Name will be: Ethoxy ethane or Diethylether both are correct
Explanation:
happy to help ya!
Answer:
NaI
Explanation:
In I₂, HI and IBr, both atoms are nonmetals and they form covalent bonds in which electrons are shared.
In NaI, Na is a metal and I a nonmetal, so they form an ionic bond, where Na loses an electron to form Na⁺ and I gains an electron to form I⁻. Anions and cations are attracted to each other through electrostatic forces.
Since ionic bonds are stronger than covalent bonds, more energy is required to break them in the melting process, thus having higher melting points.
All in all, NaI is the one with the highest melting point.