1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stolb23 [73]
4 years ago
7

A ball is dropped from rest from a high window of a tall building and falls for 4 seconds. Neglecting air resistance, the final

velocity of the ball is?
Physics
1 answer:
Semenov [28]4 years ago
6 0

Answer:

The final velocity of the ball is 39.2 m/s.

Explanation:

Given that,

A ball is dropped from rest from a high window of a tall building.

Time = 4 sec

We need to calculate the final velocity of the ball

Using equation if motion

v=u+gt

Where, v = final velocity

u = initial velocity

g = acceleration due to gravity

t = time

Put the value into the formula

v=0+9.8\times4

v=39.2\ m/s

Hence, The final velocity of the ball is 39.2 m/s.

You might be interested in
Help please ASAP !! Thanks
SVEN [57.7K]

Answer:

I think its C

Explanation:

8 0
3 years ago
A heavy ball with a weight of 100 NN is hung from the ceiling of a lecture hall on a 4.4-mm-long rope. The ball is pulled to one
allochka39001 [22]

Answer:

175.3 N

Explanation:

The motion of the ball is a uniform circular motion, therefore the net force on it must be equal to the centripetal force.

There are two forces acting on the ball at the lowest point of motion:

- The tension in the string, T , upward

- The weight of the ball, mg, downward

The net force (centripetal force) has the same direction as the tension (upward, towards the centre of the circular path), so we can write:

T-mg=m\frac{v^2}{r}

where the term on the right is the expression for the centripetal force, and where:

T is the tension in the string

mg=100 N is the weight of the ball

m=\frac{mg}{g}=\frac{100}{9.8}=10.2 kg is the mass of the ball

v = 5.7 m/s is the speed of the ball at the lowest point

r = 4.4 m is the length of the rope, so the radius of the circle

Solving for T, we find the tension in the string:

T=mg+m\frac{v^2}{r}=(100)+(10.2)\frac{5.7^2}{4.4}=175.3 N

7 0
3 years ago
3.) If Lebron James has a vertical leap of +1.35 m. then what is his takeoff speed7 For this
Scilla [17]
D, I hoped that helped you
7 0
3 years ago
Read 2 more answers
¿cual es la velocidad de un haz de electrones que marchan sin desviarse cuando pasan a traves de un campo magnetico perpendicula
Elina [12.6K]

Answer:

La velocidad del haz de electrones es 1.78x10⁵ m/s. Este valor se obtuvo asumiendo que el campo magnético dado (3500007) estaba en tesla y que la fuerza venía dada en nN.

Explanation:

Podemos encontrar la velocidad del haz de electrones usando la Ley de Lorentz:

F = |q|vBsin(\theta)     (1)

En donde:

F: es la fuerza magnética = 100 nN

q: es el módulo de la carga del electron = 1.6x10⁻¹⁹ C

v: es la velocidad del haz de electrones =?

B: es el campo magnético = 3500007 T

θ: es el ángulo entre el vector velocidad y el campo magnético = 90°

Introduciendo los valores en la ecuación (1) y resolviendo para "v" tenemos:

v = \frac{F}{qBsin(\theta)} = \frac{100 \cdot 10^{-9} N}{1.6 \cdot 10^{-19} C*3500007 T*sin(90)} = 1.78 \cdot 10^{5} m/s            

Este valor se calculó asumiendo que el campo magnético está dado en tesla (no tiene unidades en el enunciado). De igual manera se asumió que la fuerza indicada viene dada en nN.

Entonces, la velocidad del haz de electrones es 1.78x10⁵ m/s.  

Espero que te sea de utilidad!                                        

7 0
3 years ago
The change in momentum of an object is equal to the Question 4 options: Force acting on it times its velocity. impulse acting on
lesya [120]

Answer:

impulse acting on it

Explanation:

The impulse is defined as the product between the force applied to an object (F) and the time interval during which the force is applied (\Delta t):

I=F\Delta t

We can prove that this is equal to the change in momentum of the object. In fact, change in momentum is given by:

\Delta p = m \Delta v

where m is the mass and \Delta v is the change in velocity. Multiplying and dividing by \Delta t, we get

\Delta p = m \frac{\Delta v}{\Delta t} \Delta t

and since \frac{\Delta v}{\Delta t} is equal to the acceleration, a, we have

\Delta p = ma \Delta t

And since the product (ma) is equal to the force, we have

\Delta p = F \Delta t

which corresponds to the impulse.

5 0
3 years ago
Other questions:
  • Which statement correctly compares the speed of light
    15·2 answers
  • A of mass 5.0 kilograms moving at 20. meters per second collides with ball B of unknown mass moving at 10. meters per second in
    9·1 answer
  • 1. Line segment AC touches the circle at a single point B. Line segment OB extends through the center of the circle.
    7·1 answer
  • A car comes to a bridge during a storm and finds the bridge washed out. The driver must get to the other side, so he decides to
    12·1 answer
  • Which one of the two potential differences emf or terminal voltage will be greater in magnitude?Why?​
    14·1 answer
  • According to Newton’s law of universal gravitation, the sun would have blank gravity than earth because it is more blank
    9·2 answers
  • I've been stuck on this question for two weeks, please help... :,)
    14·2 answers
  • The process of examining a change in one variable in a model while assuming that all the other variables remain constant is call
    6·1 answer
  • Material speed of light
    10·1 answer
  • Which force below does the most work? All three displacements are the same. The 10 N force. The 8 N force The 6 N force. They al
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!