12. The answer would be C. 1.50 s. This is because if you divide 60 by 40, you will get 1.5.
13. For this one I'm not sure, but what I can tell you is that the heavier something is the faster it will sink, the lighter it is, it will float.
Answers:
a) 
b) 
Explanation:
a) Since we are told the satellites circle the space station at constant speed, we can assume they follow a uniform circular motion and their tangential speeds
are given by:
(1)
Where:
is the angular frequency
is the radius of the orbit of each satellite
is the period of the orbit of each satellite
Isolating
:
(2)
Applying this equation to each satellite:
(3)
(4)
(5)
(6)
(7)
(8)
Ordering this periods from largest to smallest:

b) Acceleration
is defined as the variation of velocity in time:
(9)
Applying this equation to each satellite:
(10)
(11)
(12)
(13)
(14)
(15)
Ordering this acceerations from largest to smallest:

<h2>
Answer: x=125m, y=48.308m</h2>
Explanation:
This situation is a good example of the projectile motion or parabolic motion, in which we have two components: x-component and y-component. Being their main equations to find the position as follows:
x-component:
(1)
Where:
is the projectile's initial speed
is the angle
is the time since the projectile is launched until it strikes the target
is the final horizontal position of the projectile (the value we want to find)
y-component:
(2)
Where:
is the initial height of the projectile (we are told it was launched at ground level)
is the final height of the projectile (the value we want to find)
is the acceleration due gravity
Having this clear, let's begin with x (1):
(3)
(4) This is the horizontal final position of the projectile
For y (2):
(5)
(6) This is the vertical final position of the projectile
Answer:
More force
Explanation:
Object A has more mass than object B
For object A to accelerate at the same rate as object B, it will need more force.
According to Newton's second law of motion "the net force on a body is the product of its mass and acceleration".
Net force = mass x acceleration
Now, if a body has more mass and needs to accelerate at the same rate as another one with a lower mass, the force on it must be increased.
Answer:
Acceleration of the meteorite, 
Explanation:
It is given that,
A Meteorite after striking struck a car, v = 0
Initial speed of the Meteorite, u = 130 m/s
Distance covered by Meteorite, s = 22 cm = 0.22 m
We need to find the magnitude of its deceleration. It can be calculated using the third equation of motion as :



So, the deceleration of the Meteorite is
. Hence, this is the required solution.