The solution would be like
this for this specific problem:
<span>
The force on m is:</span>
<span>
GMm / x^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2] ->
1
The force on 2m is:</span>
<span>
GM(2m) / (L - x)^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2]
-> 2
From (1), you’ll get M = 2mx^2 / L^2 and from
(2) you get M = m(L - x)^2 / L^2
Since the Ms are the same, then
2mx^2 / L^2 = m(L - x)^2 / L^2
2x^2 = (L - x)^2
xsqrt2 = L - x
x(1 + sqrt2) = L
x = L / (sqrt2 + 1) From here, we rationalize.
x = L(sqrt2 - 1) / (sqrt2 + 1)(sqrt2 - 1)
x = L(sqrt2 - 1) / (2 - 1)
x = L(sqrt2 - 1) </span>
= 0.414L
<span>Therefore, the third particle should be located the 0.414L x
axis so that the magnitude of the gravitational force on both particle 1 and
particle 2 doubles.</span>
My guess would be about 10 years because stars are hot balls of light that are reflections from years ago so it would most likely take awhile
Answer: C. Steel
Explanation: When a sound wave travels through a solid body consisting
of an elastic material, the velocity of the wave is relatively
high. For instance, the velocity of a sound wave traveling
through steel (which is almost perfectly elastic) is about
5,060 meters per second. On the other hand, the velocity
of a sound wave traveling through an inelastic solid is
relatively low. So, for example, the velocity of a sound wave
traveling through lead (which is inelastic) is approximately
1,402 meters per second.
Answer:
Check the diagram from the photo
Explanation:
<h3>16.</h3>
Your answer is correct.
___
<h3>17.</h3>
The fractional change in resistance is equal to the given temperature coefficient multiplied by the change in temperature.
R = R₀×(1 + α×ΔT)
R = (10.0 Ω)×(1 + 0.004×(65 -20)) = 11.8 Ω