1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
balu736 [363]
2 years ago
12

1. How do you determine which between the two object has a greater amount of potential energy?

Physics
1 answer:
jeka942 years ago
5 0

Answer:

All of these answers are dependent upon the specific scenario, but here are some general answers.

1. An object with a greater height will have more potential energy.

2. Potential energy can be changed into kinetic energy as an object falls. It loses height (potential energy) and gains speed (kinetic energy).

3. Depends on what scenario your class had.

You might be interested in
Sphere A of mass 0.600 kg is initially moving to the right at 4.00 m/s. sphere B, of mass 1.80 kg is initially to the right of s
anzhelika [568]

A) The velocity of sphere A after the collision is 1.00 m/s to the right

B) The collision is elastic

C) The velocity of sphere C is 2.68 m/s at a direction of -5.2^{\circ}

D) The impulse exerted on C is 4.29 kg m/s at a direction of -5.2^{\circ}

E) The collision is inelastic

F) The velocity of the center of mass of the system is 4.00 m/s to the right

Explanation:

A)

We can solve this part by using the principle of conservation of momentum. The total momentum of the system must be conserved before and after the collision:

p_i = p_f\\m_A u_A + m_B u_B = m_A v_A + m_B v_B

m_A = 0.600 kg is the mass of sphere A

u_A = 4.00 m/s is the initial velocity of the sphere A (taking the right as positive direction)

v_A is the final velocity of sphere A

m_B = 1.80 kg is the mass of sphere B

u_B = 2.00 m/s is the initial velocity of the sphere B

v_B = 3.00 m/s is the final velocity of the sphere B

Solving for vA:

v_A = \frac{m_A u_A + m_B u_B - m_B v_B}{m_A}=\frac{(0.600)(4.00)+(1.80)(2.00)-(1.80)(3.00)}{0.600}=1.00 m/s

The sign is positive, so the direction is to the right.

B)

To verify if the collision is elastic, we have to check if the total kinetic energy is conserved or not.

Before the collision:

K_i = \frac{1}{2}m_A u_A^2 + \frac{1}{2}m_B u_B^2 =\frac{1}{2}(0.600)(4.00)^2 + \frac{1}{2}(1.80)(2.00)^2=8.4 J

After the collision:

K_f = \frac{1}{2}m_A v_A^2 + \frac{1}{2}m_B v_B^2 = \frac{1}{2}(0.600)(1.00)^2 + \frac{1}{2}(1.80)(3.00)^2=8.4 J

The total kinetic energy is conserved: therefore, the collision is elastic.

C)

Now we analyze the collision between sphere B and C. Again, we apply the law of conservation of momentum, but in two dimensions: so, the total momentum must be conserved both on the x- and on the y- direction.

Taking the initial direction of sphere B as positive x-direction, the total momentum before the collision along the x-axis is:

p_x = m_B v_B = (1.80)(3.00)=5.40 kg m/s

While the total momentum along the y-axis is zero:

p_y = 0

We can now write the equations of conservation of momentum along the two directions as follows:

p_x = p'_{Bx} + p'_{Cx}\\0 = p'_{By} + p'_{Cy} (1)

We also know the components of the momentum of B after the collision:

p'_{Bx}=(1.20)(cos 19)=1.13 kg m/s\\p'_{By}=(1.20)(sin 19)=0.39 kg m/s

So substituting into (1), we find the components of the momentum of C after the collision:

p'_{Cx}=p_B - p'_{Bx}=5.40 - 1.13=4.27 kg m/s\\p'_{Cy}=p_C - p'_{Cy}=0-0.39 = -0.39 kg m/s

So the magnitude of the momentum of C is

p'_C = \sqrt{p_{Cx}^2+p_{Cy}^2}=\sqrt{4.27^2+(-0.39)^2}=4.29 kg m/s

Dividing by the mass of C (1.60 kg), we find the magnitude of the velocity:

v_c = \frac{p_C}{m_C}=\frac{4.29}{1.60}=2.68 m/s

And the direction is

\theta=tan^{-1}(\frac{p_y}{p_x})=tan^{-1}(\frac{-0.39}{4.27})=-5.2^{\circ}

D)

The impulse imparted by B to C is equal to the change in momentum of C.

The initial momentum of C is zero, since it was at rest:

p_C = 0

While the final momentum is:

p'_C = 4.29 kg m/s

So the magnitude of the impulse exerted on C is

I=p'_C - p_C = 4.29 - 0 = 4.29 kg m/s

And the direction is the angle between the direction of the final momentum and the direction of the initial momentum: since the initial momentum is zero, the angle is simply equal to the angle of the final momentum, therefore -5.2^{\circ}.

E)

To check if the collision is elastic, we have to check if the total kinetic energy is conserved or not.

The total kinetic energy before the collision is just the kinetic energy of B, since C was at rest:

K_i = \frac{1}{2}m_B u_B^2 = \frac{1}{2}(1.80)(3.00)^2=8.1 J

The total kinetic energy after the collision is the sum of the kinetic energies of B and C:

K_f = \frac{1}{2}m_B v_B^2 + \frac{1}{2}m_C v_C^2 = \frac{1}{2}(1.80)(1.20)^2 + \frac{1}{2}(1.60)(2.68)^2=7.0 J

Since the total kinetic energy is not conserved, the collision is inelastic.

F)

Here we notice that the system is isolated: so there are no external forces acting on the system, and this means the system has no acceleration, according to Newton's second law:

F=Ma

Since F = 0, then a = 0, and so the center of mass of the system moves at constant velocity.

Therefore, the centre of mass after the 2nd collision must be equal to the velocity of the centre of mass before the 1st collision: which is the velocity of the sphere A before the 1st collision (because the other 2 spheres were at rest), so it is simply 4.00 m/s to the right.

Learn more about momentum and collisions:

brainly.com/question/6439920

brainly.com/question/2990238

brainly.com/question/7973509

brainly.com/question/6573742

#LearnwithBrainly

8 0
3 years ago
Donde se hizo el “siluetazo”, <br>Me aydan​
brilliants [131]

Answer:

La palabra silueta se deriva del nombre de Étienne de Silhouette, una ministra de finanzas francesa que, en 1759, se vio obligada por la crisis crediticia de Francia durante la Guerra de los Siete Años a imponer severas demandas económicas al pueblo francés, particularmente a los ricos.

Explanation:

3 0
3 years ago
A soldier throws a grenade horizontally from the top of a cliff. Which of the following curves best describes the path taken by
Natasha_Volkova [10]

Answer:

4. Parabola

Explanation:

The motion of the flight of the grenade is a projectile motion, it's shape is best illustrated using a parabolic diagram.

It's not a circle as the path is not totally round.

It's not an ellipse as the path of motion is not a a completely bounded shape.

Its not a hyperbola as a hyperbola is an open curve with two branches.

Its a parabolic shape because a parabola has just one branch

7 0
3 years ago
He steel used to make structural beams in buildings is a mixture. What category best describes this type of mixture?
aleksklad [387]
The answer would be heterogeneous mixture
8 0
3 years ago
Read 2 more answers
During which stage of sleep does most dreaming occur
kumpel [21]
REM, it is the deepest sleep and will send you deep within the mind
5 0
3 years ago
Other questions:
  • Downwelling is the process that moves cold, dense water from the ocean surface to the seafloor near the polar regions. how can d
    13·1 answer
  • A pilot drops a package from a plane flying horizontally at a constant speed. Neglecting air resistance, when the package hits t
    15·1 answer
  • Newton's First Law of Motion states that an object will remain at rest or in uniform motion in a straight line unless acted upon
    14·2 answers
  • With a magnetic field strength of 1.41 tesla, all of the protons in organic compounds will resonate over a narrow range of frequ
    11·1 answer
  • A system of pulleys is called an ?
    5·1 answer
  • The Strength of an electromagnet can be increased by reducing the number of turns on the wire coil true or false
    7·1 answer
  • A(n)___ forms where light seems to come from.
    8·2 answers
  • If a net force of 20 N is applied to a mass of 4kg, what is the acceleration​
    15·1 answer
  • A skateboarder starting from rest accelerates down a ramp at 2 m/s for 2 s. What is the final speed of the skateboarder?
    13·1 answer
  • Yassine on the football team tries to kick a football so that it stays in the air for a long "hang time". If the ball is kicked
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!