Answer:
the difference is tyat eruptions of less gassy and more gassy is that the less gassy doesnt retain as much gas as the more gassy one and thus the eruption of the less gassy is less damage to the more gassy
Answer:
Explanation:
alright, dawg, lets get this bread. CHEMISTRY? OH YEAH I LOVE CHEMISTRY.
what is a mol? do you know who avogadro is? sounds like avocado. free shavocado. ok so you MUST REMEMBER THIS NUMBER PLEASE.
please remember this number and commit it to your memory: avogadros number

this is how much a mole is. you know how a pair is 2 and a dozen is 12? ok so a mole is
it is confusing at first but hopefully this helps you to understand.
now that we understand this..... lets perform this calculation with a calculator

notice i divide the question by the avogadros number to find out how many moles are in the number. ok but listen... it gets into a tough area here... because HOW ARE WE TO DIVIDE SUCH A HUMONGOUS NUMBER BY ANOTHER HUMONGOUS NUMBER?!?!?
its easy, its cake, just listen this is how you do it. only focus on the numbers NOT the 10 exponential ones. so just 3.90 and 6.02 ok? lets divide these two numbers 3.90 / 6.02 and we get 0.6478... how interesting... ok now lets deal with the exponents of 10. notice that we are DIVIDING these numbers so think of it as subtracting the exponents of ten..... 22 minus 23 equals -1
so we have 
now this negative 1 thing is annoying so lets just make it to the power of 0

and anything to the power of 0 just becomes 1.
0.06478
so this is our answer but keep in mind we need 3 sig figs. if we round then we get 0.0648
put this into scientific notation we get 
Answer:
pH = 2.66
Explanation:
- Acetic Acid + NaOH → Sodium Acetate + H₂O
First we <u>calculate the number of moles of each reactant</u>, using the <em>given volumes and concentrations</em>:
- 0.75 M Acetic acid * 50.0 mL = 37.5 mmol acetic acid
- 1.0 M NaOH * 10.0 mL = 10 mmol NaOH
We<u> calculate how many acetic acid moles remain after the reaction</u>:
- 37.5 mmol - 10 mmol = 27.5 mmol acetic acid
We now <u>calculate the molar concentration of acetic acid after the reaction</u>:
27.5 mmol / (50.0 mL + 10.0 mL) = 0.458 M
Then we <u>calculate [H⁺]</u>, using the<em> following formula for weak acid solutions</em>:
- [H⁺] =

Finally we <u>calculate the pH</u>:
The two compounds shown indeed have tha same molecular formula, C5 H11 NO2. One of the molecules has a group NH2 and a group COOH, the other molecule has a NOO group, that makes that the two isomers have a completely different structure, with the atoms arranged in a completely different order. <span>This kind of isomers fits in the definition of structural isomers, so the answer is structural isomers.</span>
: A chemical process of decomposition involving the splitting of a bond by the addition of water.