Answer: 373 mL
Explanation:
Since there is no change in pressure, the formula: V / T = V / T can be used.
However, you must first convert the temperatures to Kelvin by adding 273 to them:
(19 + 273) = 292K and (90 + 273) = 363K.
Now, plug in: V / 292 = 464 / 363 → V = 373 mL :)
Answer:
Temperature is an abiotic component of an ecosystem
Explanation:
Answer:
T2 =21.52°C
Explanation:
Given data:
Specific heat capacity of sample = 1.1 J/g.°C
Mass of sample = 385 g
Initial temperature = 19.5°C
Heat absorbed = 885 J
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = Final temperature - initial temperature
885J = 385 g× 1.1 J/g.°C×(T2 - 19.5°C )
885 J = 423.5 J/°C× (T2 - 19.5°C )
885 J / 423.5 J/°C = (T2 - 19.5°C )
2.02°C = (T2 - 19.5°C )
T2 = 2.02°C + 19.5°C
T2 =21.52°C
Yes, this is balanced. Each part of the substance (like Mg) has the same number on both sides.
Hope this helps you:)