Explanation:
1) Work done = force x distance x cos(θ)
= 0.15 x 6 x cos(30)
= 0.779
2) Ek = ½mv²
v = acceleration due to gravity so 9.81
Ek = ½(2)(9.81)²
Ek = 96.2361
3) v = (√(2em)) / m
= (√(2(96.2361)(2)) / 2
= 9.81 so especially with no time given, I can only assume the acceleration due to gravity but take it with a pinch of salt.
I believe the answer is: A. Passive heating and cooling.
<u>Software Development and Client Needs</u>
In Incremental method of software development customers who do not have a basic idea of the development process are being carried along on like other methods that will relegate them to the background until a product is ready.
With this model and structure in place, when softwares/ products are built from several stages e.g prototype, testing, and when new features are added customers are always carried along with their valuable feedback and suggested greatly considered to achieve the customers satisfactions
This model will work well for the customers/clients who does not have a clear idea on the systems needed for their operations.
In summary the incremental model combines features from the waterfall and prototyping model.
For more information on soft ware development process kindly visit
brainly.com/question/20369682
Answer: D) All of the above
Explanation:
Burn rate can be affected by all of the above reasons as, variation in chamber pressure because the pressure are dependence on the burn rate and temperature variation in initial gain can affect the rate of the chemical reactions and initial gain in the temperature increased the burning rate. As, gas flow velocity also influenced to increasing the burn rate as it flowing parallel to the surface burning. Burn rate is also known as erosive burning because of the variation in flow velocity and chamber pressure.
Answer:
Uair = 0.0749 KW/k = 74.9 W/k
Explanation:
The natural air change per hour is given by the formula:
Natural Air Change per Hour = ACPH = 60*Volume Flow/Volume
where,
ACPH = 0.4
Volume Flow = ? in ft³/min
Volume = 19456 ft³
Therefore,
0.4 = (60 min)(Volume Flow)/(19456 ft³)
Volume Flow = (0.4)(19456 ft³)/(60 min) = (129.7 ft³/min)(1 min/60 s)
Volume Flow = (2.16 ft³/s)(0.3048 m/1 ft)³ = 0.061 m³/s
Now, we find heat loss coefficient:
Uair = Volumetric Flow*Density of air*Specific Heat Capacity of air
Uair = (0.061 m³/s)(1.225 kg/m³)(1 KJ/kg.k)
<u>Uair = 0.0749 KW/k = 74.9 W/k</u>