1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
blondinia [14]
2 years ago
12

In a certain two slit diffraction experiment, two slits 0.02mm wide are spaced0.2mm between centers.(a) How many fringes appear

between the first minima of the single slit envelopeon either side of the central maximum?(b) If the angle between the central maximum and the second fringe to eitherside of the central maximum is 0.17 degrees, what is the wavelength?
Physics
1 answer:
Kamila [148]2 years ago
8 0

Answer:

a)   m = 10  and    b)  λ  = 3.119 10⁻⁷ m

Explanation:

In the diffraction experiments the maximums appear due to the interference phenomenon modulated by the envelope of the diffraction phenomenon, for which to find the number of lines within the maximum diffraction center we must relate the equations of the two phenomena.

Interference equation      d sin θ = m λ

Diffraction equation         a sin θ = n λ

Where d is the width between slits (d = 0.2 mm), a is the width of each slit (a = 0.02 mm). θ is the angle, λ the wavelength, m and n  are an integer.

Let's find the relationship of these two equations

    d sin θ / a sin θ = m Lam / n Lam

The first maximum diffraction (envelope) occurs for n = 1, let's simplify

    d / a = m

Let's calculate

    m = 0.2 / 0.02

    m = 10

This means that 10 interference lines appear within the first maximum diffraction.

b) let's use the interference equation, remember that the angles must be given in radians

    θ = 0.17 ° (π rad / 180 °) = 2.97 10⁻³ rad

    d sin  θ = m λ

    λ = d sin θ / m

    λ = 0.2 10⁻³ sin (2.97 10⁻³) / 2

    λ  = 3.119 10⁻⁷ m

You might be interested in
3.) An engineer is designing the runway for an airport. Of the planes that will use the airport,
scoray [572]

Answer: 704

Explanation:Vi = 0 m/s

vf = 65 m/s

a = 3 m/s2

d = ??

vf2 = vi2 + 2*a*d

(65 m/s)2 = (0 m/s)2 + 2*(3 m/s2)*d

4225 m2/s2 = (0 m/s)2 + (6 m/s2)*d

(4225 m 2/m2)/(6 m/s2) = d

d = 704 m

5 0
2 years ago
Read 2 more answers
Suppose I have a spherical insulating shell with inner radius r and outer radius R. The shell has a uniformly distributed charge
a_sh-v [17]

Answer:

3Q / 4 pi (R^3 - r^3)

Explanation:

Charge density = charge / volume

volume of a spherical shell = \frac{4}{3} \pi(R^{3} - r^{3})

4 0
3 years ago
What happens when a boxer doesn't make weight?
ryzh [129]
They would just have to box in a higher weight class
6 0
3 years ago
A cylinder with a piston contains 0.300 mol of oxygen at 2.50×105 Pa and 360 K . The oxygen may be treated as an ideal gas. The
alukav5142 [94]

Answer:

a) W =  900   J.  b) Q =  3142.8   J . c) ΔU =  2242.8   J. d) W = 0. e) Q =   2244.78   J.  g) Δ U  =  0.

Explanation:

(a) Work done by the gas during the initial expansion:

The work done W for a thermodynamic constant pressure process is given as;

W  =  p Δ V

where  

p  is the pressure and  Δ V  is the change in volume.

Here, Given;

P 1 = i n i t i a l  p r e s s u r e  =  2.5 × 10^ 5   P a

T 1 = i n i t i a l   t e m p e r a t u r e  =  360   K

n = n u m b er   o f   m o l e s  =  0.300  m o l  

The ideal gas equation is given by  

P V = nRT

where ,

p  =  absolute pressure of the gas  

V =  volume of the gas  

n  =  number of moles of the gas  

R  =  universal gas constant  =  8.314   K J / m o l   K

T  =  absolute temperature of the gas  

Now we will Calculate the initial volume of the gas using the above equation as follows;

PV  =  n R T

2.5 × 10 ^5 × V 1  =  0.3 × 8.314 × 360

V1 = 897.91 / 250000

V 1  =  0.0036   m ^3  = 3.6×10^-3 m^3

We are also given that

V 2  =  2× V 1

V2 =  2 × 0.0036

V2 =  0.0072   m^3  

Thus, work done is calculated as;

W  =  p Δ V  = p×(V2 - V1)

W =  ( 2.5 × 10 ^5 ) ×( 0.0072  −  0.0036 )

W =  900   J.

(b) Heat added to the gas during the initial expansion:

For a diatomic gas,

C p  =  7 /2 ×R

Cp =  7 /2 × 8.314

Cp =  29.1  J / mo l K  

For a constant pressure process,  

T 2 /T 1  =  V 2 /V 1

T 2  =  V 2 /V 1 × T 1

T 2  =  2 × T 1  = 2×360

T 2  =  720  K

Heat added (Q) can be calculated as;  

Q  =  n C p Δ T  = nC×(T2 - T1)

Q =  0.3 × 29.1 × ( 720  −  360 )

Q =  3142.8   J .

(c) Internal-energy change of the gas during the initial expansion:

From first law of thermodynamics ;

Q  =  Δ U + W

where ,

Q is the heat added or extracted,

Δ U  is the change in internal energy,

W is the work done on or by the system.

Put the previously calculated values of Q and W in the above formula to calculate  Δ U  as;

Δ U  =  Q  −  W

ΔU =  3142.8  −  900

ΔU =  2242.8   J.

(d) The work done during the final cooling:

The final cooling is a constant volume or isochoric process. There is no change in volume and thus the work done is zero.

(e) Heat added during the final cooling:

The final process is a isochoric process and for this, the first law equation becomes ,

Q  =  Δ U  

The molar specific heat at constant volume is given as;

C v  =  5 /2 ×R

Cv =  5 /2 × 8.314

Cv =  20.785  J / m o l   K

The change in internal energy and thus the heat added can be calculated as;  

Q  = Δ U  =  n C v Δ T

Q =  0.3 × 20.785 × ( 720 - 360 )

Q =   2244.78   J.

(f) Internal-energy change during the final cooling:

Internal-energy change during the final cooling  is equal to the heat added during the final cooling Q  =  Δ U  .

(g) The internal-energy change during the isothermal compression:

For isothermal compression,

Δ U  =  n C v Δ T

As their is no change in temperature for isothermal compression,  

Δ T = 0 ,  then,

Δ U  =  0.

8 0
2 years ago
A disk with a hole has inner radius rin and outer radius rout. the disk is uniformly charged with total charge q. find an expres
Effectus [21]
Here it is.  I used the surface charge density σ as q/Area, and then wrote it out in terms of q at the end

3 0
3 years ago
Other questions:
  • The triceps muscle in the back of the upper arm is primarily used to extend the forearm. Suppose this muscle in a professional b
    8·1 answer
  • A force of 38 newtons is acting on an object making an angle of 65º with the horizontal. What is the value component of the forc
    6·2 answers
  • Janel did an experiment to see which spices can kill bacteria. She mixed a spice with bacteria food called agar. She poured the
    7·1 answer
  • How society has been benefited by the knowledge of physics​
    15·2 answers
  • 7. If a person starts from a standstill and the person can accelerate at 1 m/s/s, how long will it take for the person to get up
    10·1 answer
  • The area in which the attraction and the repulsion of a magnet's poles are felt is a(n)
    5·2 answers
  • A TV satellite dish is designed to receive radio waves of wavelength
    5·1 answer
  • A 1kg sphere rotates in a circular path of radius 0.2m from rest and it reaches an angular speed of 20rad/sec in 10 second calcu
    11·1 answer
  • The unit of energy is a derived unit why​
    7·2 answers
  • Which is NOT a type of graph?<br> O circle<br> O line<br> O chart<br> O bar
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!