Answer:
First, the different indices of refraction must be taken into account (in different media): for example, the refractive index of light in a vacuum is 1 (since vacuum = c). The value of the refractive index of the medium is a measure of its "optical density": Light spreads at maximum speed in a vacuum but slower in others transparent media; therefore in all of them n> 1. Examples of typical values of are those of air (1,0003), water (1.33), glass (1.46 - 1.66) or diamond (2.42).
The refractive index has a maximum value and a minimum value, which we can calculate the minimum value by means of the following explanation:
The limit or minimum angle, α lim, is defined as the angle of refraction from which the refracted ray disappears and all the light is reflected. As in the maximum value of angle of refraction, from which everything is reflected, is βmax = 90º, we can know the limit angle (the minimum angle that we would have to have to know the minimum index of refraction) by Snell's law:
βmax = 90º ⇒ n 1x sin α (lim) = n 2 ⇒ sin α lim = n 2 / n 1
Explanation:
When a light ray strikes the separation surface between two media different, the incident beam is divided into three: the most intense penetrates the second half forming the refracted ray, another is reflected on the surface and the third is breaks down into numerous weak beams emerging from the point of incidence in all directions, forming a set of stray light beams.
The sound wave would behave differently in a swimming pool than in his bedroom because sound waves travel faster in more dense mediums; such as water. The wave will travel faster in water, and slower in air.
Since this is a distance/time graph, the speed at any time is the slope
of the part of the graph that's directly over that time on the x-axis.
At time t1 = 2.0 s
That's in the middle of the first segment of the graph,
that extends from zero to 3 seconds.
Its slope is 7/3 . v1 = 7/3 m/s .
At time t2 = 4.0 s
That's in the middle of the horizontal part of the graph
that runs from 3 to 6 seconds.
Its slope is zero.
v2 = zero .
At time t3 = 13 s.
That's in the middle of the part of the graph that's sloping down,
between 11 and 16 seconds.
Its slope is -3/5 . v3 = -0.6 m/s .
From the planks equation
E=hv
V= c/ wave length
V= 3×10^8/30×10^-9
=1×10^16
E= hv
6.63×10^-34×1×10^16
= 6.63×10^-18
The acceleration of the ball is 5 m/s^2. This can be calculated using a formula that relates the change in velocity, acceleration, and time. This formula is:
Vf = Vi + at
where:
Vf = final velocity
Vi = initial velocity
a = acceleration
t = time
Substituting the values gives:
30 = 20 + a(2)
<span>a = 5 m/s^2 --> Final Answer</span>