Answer:
The lithosphere can affect the atmosphere when tectonic plates move and cause an eruption, where magma below spews up as lava above.
Explanation:
The lithosphere is broken into giant plates that fit around the globe like puzzle pieces. These puzzle pieces move a little bit each year as they slide on top of a somewhat fluid part of the mantle called the asthenosphere.
Answer:
F = - 1,598 10⁻³ N
Explanation:
Electic strength is given by Coulomb's law
F = k q₁ q₂ / r²
Where k is the Coulomb constant that is worth 8.99 10⁸ N m²/C², q₁ and q₂ are the charges and r is the distance that separates the electric charges
In this case the charge of the two spheres is the same and of a different sign since when you remove the charge of a sphere that was initially neutral, it is left with that charge removed but of the opposite sign
q₁ = q₂ = 2.50 10¹³ electrons = 2.50 10¹³ 1.6 10⁻¹⁹
q₀ = 4.0 10⁻⁶ C
Let's calculate
F = - 8.99 10⁸ (4.0 10⁻⁶)² / 0.30²
F = - 1,598 10⁻³ N
The approximate de Broglie wavelength of a tennis ball is 9.4×10^(-34) m.
What is the de Broglie wavelength:
It is the wavelength that is associated with an object in relation to its momentum and mass is known as de Broglie wavelength.
A particle's de Broglie wavelength is usually inversely proportional to its force.
The formula of de Broglie wavelength:
here mass of a tennis ball is given
mass, m=70 g = 0.07 kg
ball is moving with velocity
v = 10 m/s
h is Plank constant,
h=6.63×10^(-34) Js
substituting the values in formula,
λ = 6.63×10^(-34) / ( 0.070*10)
λ = 9.4 ×10^(-34) m
Hence
The approximate de Broglie wavelength of a tennis ball is 9.4×10^(-34) m
Learn more about de Broglie wavelength here:
<u>brainly.com/question/17295250</u>
#SPJ4
Answer:
A.
Explanation: both triple by 3