Answer:
A copper wire current consists of electrons appropriately called conduction electrons.
Explanation:
This answer came from quizlet.com. I hope that this helps you and good luck!
Answer: the direction of the magnetic force on the electron will be moving out of the screen, perpendicular to the magnetic field.
Explanation:
The magnetic force F on a moving electron at right angle to a magnetic field is given by the formula:
F = BqVSinØ
If an electron moves in the plane of this screen toward the top of the screen. A magnetic field is also in the plane of the screen and directed toward the right. Then, the direction of the magnetic force on the electron will be perpendicular to the magnetic field
According to the Fleming's left - hand rule, the direction of the magnetic force on the electron will be moving out of the plane of the screen.
Bulbs c and b would still be screwed in if they were in to begin with and bulbs A, D, and E. would be unscrewed
Answer:
Energy
Kinetic
Energy in
this
Explanation:
ithikitsthatecauseireallydo
Answer:
the magnitude and direction of d → B on the x ‑axis at x = 2.50 m is -6.4 × 10⁻¹¹T(Along z direction)
the magnitude and direction of d → B on the z ‑axis at z = 5.00 m is 1.6 × 10⁻¹¹T(Along x direction)
Explanation:
Use Biot, Savart, the magnetic field

Given that,
i = 1.00A
d → l = 4.00 m m ^ j
r = 2.5m
Displacement vector is


=2.5m
on the axis of x at x = 2.5

r = 2.5m
And unit vector


Therefore, the magnetic field is as follow


(Along z direction)
B)r = 5.00m
Displacement vector is


=5.00m
on the axis of x at x = 5.0

r = 5.00m
And unit vector


Therefore, the magnetic field is as follow


(Along x direction)