Answer:
3.2 moles
Explanation:
First, we'll begin by writing a balanced equation for the Combustion of methane to produce carbon dioxide. This is illustrated below:
CH4 + 2O2 —> CO2 + 2H2O
From the balanced equation above,
1 mole of methane (CH4) reacted to produced 1 mole of carbon dioxide (CO2).
Therefore, 3.2 moles of methane (CH4) will react to produce 3.2 moles of carbon dioxide (CO2).
From the illustration above, 3.2 moles of methane is needed to produce 3.2 moles of carbon dioxide.
Answer:
The balanced equation is:
2 HNO3 + Mg ---> Mg(NO3)2 + H2
From the equation, we can see that we need twice the moles of HNO3 than the moles of Mg
Moles of Mg:
Molar mass of Mg = 24 g/mol
Moles = Given mass / Molar Mass
Moles of Mg = 4.47 / 24 = 0.18 moles (approx)
Hence, 2(moles of Mg) = 0.36 moles of HNO3 will be consumed
Number of moles of HNO3 after the reaction is finished is the number of unreacted moles of HNO3
Unreacted moles of HNO3 = Total Moles - Moles consumed
Unreacted moles of HNO3 = 0.64 moles (approx)
Since we approximated the value of moles of Mg, the value of remaining moles of HNO3 will also be approximate
From the given options, we can see that 0.632 moles is the closest value to our answer
Therefore, 0.632 moles will remain after the reaction
Answer:
the other stars are much farther away from Earth than our sun
<u>Answer:</u> The correct answer is Option A.
<u>Explanation:</u>
Electronegativity is defined as the tendency of an atom to attract the shared pair of electrons towards itself whenever a bond is formed.
This property increases as we move from left to right across a period because the number of charge on the nucleus gets increased and electrons are attracted more towards the nucleus.
This property decreases as we move from top to bottom in a group because the electrons get add up in the new shells which make them further away from the nucleus.
Thus, the correct answer is Option A.
Iodine and Calcium is the correct answer