First, calculate for the distance between the given points A and B by using the equation,
<span> D = sqrt ((x2 – x1)2 + (y2 – y1)2)</span>
Substitute the known values:
<span> D = sqrt((9 – 2)2 + (25 – 1)2)</span>
<span> D = 25 m</span>
I assume the unknown here is the time it would require for the particle to move from point A to B. This can be answered by dividing the calculated distance by the speed given above.
<span> t = (25 m)/ (50 m/s) = 0.5 s</span>
<span>Thus, it will take 0.5s for the particle to complete the route. </span>
Or, G = [M1 L1 T-2] × [L]2 × [M]-2 = [M-1 L3 T-2]. Therefore, the gravitational constant is dimensionally represented as M-1 L3 T-2.
Answer:
0.79
Explanation:
Using Snell's law, we have that:
n(1) * sin θ1 = n(2) * sinθ2
Where n(1) = refractive index of air = 1.0003
θ1 = angle of incidence
n(2) = refractive index of second substance
θ2 = angle of refraction
The angle of reflection through the unknown substance is the same as the angle of incidence of air. This means that θ1 = 32°
=> 1.0003 * sin32 = n(2) * sin42
n(2) = (1.0003 * sin32) / sin42
n(2) = 0.79
Hello!
The kind of gas cloud that is most likely to give birth to stars is a cold, dense gas cloud.
Stars are formed in giant molecular clouds, called "star nurseries". These are regions with molecular Hydrogen, Helium, and little amounts of other elements. These are cold and dense regions, and the gas cloud collapses, forming a protostar. The protostar gradually heats, powering nuclear reactions in its center, which increases the temperature even more and giving birth to a star.
Have a nice day!