Answer:
a) 1,6%
b) 64,775 g/mol
c) 3,6×10⁻² M
d) 2,3×10⁻³ g/mL
Explanation:
a) The mass fractium of helium is obtained converting the moles of the four gases to grams with molar weight and then caculating of the total of grams how many are of helium, thus:
- Helium: 0,25 moles ×
= 1 g of Helium - Argon: 0,25 moles ×
= 10 g of Argon - Krypton: 0,25 moles ×
= 20,95 g of krypton - Xenon: 0,25 moles ×
= 32,825 g of Xenon
Total grams: 1g+10g+20,85g+30,825g= 62,675 g
Mass fraction of helium:
× 100 = <em>1,6%</em>
<em />
<em>The mass fraction of Helium is 1,6%</em>
<em />
<em>b)</em><em> </em>Because the mole fraction of all gases is the same the average molecular weight of the mixture is:
= 64,775 g/mol
c) The molar concentration is possible to know ussing ideal gas law, thus:
= M
Where:
P is pressure: 150 kPa
R is gas constant: 8,3145
T is temperature: 500 K
And M is molar concentration. Replacing:
M = 3,6×10⁻² M
d) The mass density is possible to know converting the moles of molarity to grams with average molecular weight and liters to mililiters, thus:
3,6×10⁻²
×
×
=
2,3×10⁻³ g/mL
I hope it helps!
Answer:
The answer is the B. Proteins
Explanation:
It is known that Ribosomes are the factory to synthesize proteins. This is their function. In cell zones where ribosomes are abundant, proteins are actively produced
The formula for Hexafluoride is F6S.
1. There are 41.99 grams in 4.5 moles of sodium fluoride.
2. There are 1.26 moles in 98.3 grams of aluminum hydroxide.
3. There are 5 grams in 0.02 moles of beryllium iodide.
4. There are 0.70 moles in 68 grams of copper (II) hydroxide.
5. There are 0.064 grams in 2.3x10^-4 moles of calcium phosphate.
Answer:
these two processes supply the electrons that are needed for the electron transport chain
Explanation:
Oxidative phosphorylation is the process in which electrons transfer from electron donors to electron acceptors (usually oxygen). These reactions are called redox reactions, and they provide energy used to form ATP.
Electron donors (NADH and FADH2) used in oxidative phosphorylation are produces in some of the catabolic biochemical processes, such as glycolysis, the citric acid cycle, and beta oxidation. The NADH and FADH2 are energy-rich molecules because each of them contains a pair of electrons thus having a high transfer potential. Because of that, oxidative phosphorylation could not happen without first obtaining electron donors in glycolysis and citric acid cycle.