1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lesya692 [45]
2 years ago
10

What is the net work done on the object over the distance shown?

Physics
1 answer:
enyata [817]2 years ago
3 0

Answer:

0

Explanation:

the positive cancels out the negative area

You might be interested in
You stand on a frictional platform that is rotating at 1.1 rev/s. Your arms are outstretched, and you hold a heavy weight in eac
bezimeni [28]

Answer:

a) The resulting angular speed of platform is 1.38 rev/sec

b) The change in kinetic energy of the system is 53 J.

Explanation:

This question is incomplete. The complete question will be:

You stand on a frictional platform that is rotating at 1.1 rev/s. Your arms are outstretched, and you hold a heavy weight in each hand. The moment of inertia of you, the extended weights, and the platform is 8.8 kg · m2. When you pull the weights in toward your body, the moment of inertia decreases to  7.0 k g .m 2  

a) What is the resulting angular speed of the platform? Answer in units of r e v / s .

b)What is the change in kinetic energy of the system? Answer in units of J.

<h3>ANSWER:</h3>

a)

we know that:

Angular Momentum = L = Iω

From conservation of momentum:

Lo = Lf

(Io) (ωo) = (If) (ωf)

ωf = (Io) (ωo)/(If)

ωf = (8.8 kg.m²)(1.1 rev/s)/(7.0 kg.m²)

<u>ωf = 1.38 rev/sec =</u>

b)

ωf = (1.38 rev/sec)(2π rad/ 1 rev) = 8.67 rad/sec

ωo = (1.1 rev/sec)(2π rad/ 1 rev) = 6.91 rad/sec

The kinetic energy for rotational motion is given as:

K.E = (1/2)Iω²

Thus, the change in kinetic energy will be:

ΔK.E = (K.E)f - (K.E)o

ΔK.E = (1/2)Ifωf² - (1/2)Ioωo²

ΔK.E = (1/2)(Ifωf² - Ioωo²)

ΔK.E = (1/2)[(7 kg.m²)(8.67 rad/sec)² - (8.8 kg.m²)(6.91 rad/sec)²

<u>ΔK.E = 53 J</u>

5 0
3 years ago
A wave has a frequency of 15,500 Hz and a wavelength of 0.20 m. What is the
Hoochie [10]

Answer:

3100 m/s

Explanation:

The relationship between frequency and wavelength of a wave is given by the wave equation:

v=f\lambda

where

v is the speed of the wave

f is its frequency

\lambda is the wavelength

For the wave in this problem,

f = 15,500 Hz

\lambda=0.20 m

Therefore, the wave speed is

v=(15500)(0.20)=3100 m/s

4 0
3 years ago
A race horse can run a mile race in just under 2 minutes. Is it possible for
liubo4ka [24]

Answer:

Yes.

Explanation:

A kilometer is less than a mile, therefore if a horse can finish one mile in less than 2 minutes then it can certainly do a kilometer in less than two minutes.

7 0
2 years ago
a bus takes to reach from station A to station B and then 3 hour to return from station B to station A find the average velocity
Anton [14]

Answer:

you have probably missed some details in the question.

3 0
3 years ago
Can anyone help me? (physics)
Masja [62]

Answer:

The initial velocity of the golf is 15.7 m/s.

The direction of the golf is 57°.

Explanation:

The following data were obtained from the question:

Time of flight (T) = 2.7 secs

Range (R) = 23 m

Acceleration due to gravity (g) = 9.8 m/s²

Initial velocity (u) =.?

Direction (θ) =.?

T = 2U Sine θ /g

2.7 = 2 × U × Sine θ /9.8

Cross multiply

2.7 × 9.8 = 2 × U × Sine θ

26.46 = 2 × U × Sine θ

Divide both side by 2 × Sine θ

U = 26.46 /2 Sine θ

U = 13.23 / Sine θ ... (1)

R = U² Sine 2θ /g

23 = U² Sine 2θ / 9.8

U = 13.23 / Sine θ

23 = (13.23/ Sine θ)² Sine 2θ / 9.8

23 = (175.0329 / Sine² θ) × Sine 2θ / 9.8

23 = 17.8605/Sine² θ × Sine 2θ

Recall:

Sine 2θ = 2SineθCosθ

23 = 17.8605/ Sine² θ × 2SineθCosθ

23 = 17.8605/ Sine θ × 2Cosθ

23 = 35.721 Cos θ /Sine θ

Cross multiply

23 × Sine θ = 35.721 Cos θ

Divide both side by 23

Sine θ = 35.721 Cos θ /23

Sine θ = 1.5531 × Cos θ

Divide both side by Cos θ

Sine θ /Cos θ = 1.5531

Recall:

Sine θ /Cos θ = Tan θ

Sine θ /Cos θ = 1.5531

Tan θ = 1.5531

Take the inverse of Tan

θ = Tan¯¹ (1.5531)

θ = 57°

Therefore, the direction of the golf is 57°

Thus, the initial velocity can be obtained as follow:

U = 13.23 / Sine θ

θ = 57°

U = 13.23 / Sine 57

U = 13.23/0.8387

U = 15.7 m/s

Therefore, the initial velocity of the golf is 15.7 m/s

8 0
3 years ago
Other questions:
  • Can someone solve this problem and explain to me how you got it​
    6·1 answer
  • Beyond what point must an object be squeezed for it to become a black hole
    12·1 answer
  • Why are diamonds so good at cutting things answers?
    8·2 answers
  • A hydraulic press has one piston of diameter 4.0 cm and the other piston of diameter 8.0 cm. What force must be applied to the s
    13·1 answer
  • 1) A rock thrown horizontally from the top of a
    5·1 answer
  • Maya kicks a soccer ball 40 N towards east. At the exact same time, Casey kicks
    12·1 answer
  • The eye of the Atlantic giant squid has a diameter of 3.50 × 10^2 mm. If the eye
    5·1 answer
  • jennifer is trying out for the soccer team and really wants to make varsity. after tryouts she learns she is on the junior varsi
    6·1 answer
  • What is the velocity of a Usain Bolt if he runs 200 m in 10 seconds?
    11·1 answer
  • explain the fleming left-hand rule with the diagram and what will the direction of the induced current in the figure if the magn
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!