Answer :
The distance is 109.89 m.
Explanation :
Given that,
Height = 40 m
Angle = 20°
We need to calculate the base of the plateau
Using formula of angle

Where, h = height
x = base
= angle
Put the value into the formula



Hence, The distance is 109.89 m.
Answer:
Explanation:
We know that the formula for acceleration is given by:
, where v = Final velocity
u= Initial velocity
Given : The driver of a car traveling 110 km/h slams on the brakes so that the car undergoes a constant acceleration.
i.e. u= 110 km/h
[∵ 1 km= 100 meters and 1 hour = 3600 seconds]
v= 0 m/s ( At brake , final velocity becomes 0)
t=4.5 seconds
Substitute all the values in the formula , we get

Hence, the average acceleration of the car during braking is
.
A ball falling through the air has a mass, a density, a volume...it is facing air resistance and is being acted on by gravity...it is accelerating and gaining velocity...and it is increasing in kinetic energy.
I suppose out of all those the biggest thing the ball has in this case is ENERGY. There are two main types to focus on...
Kinetic Energy - The further the ball fall the more KE it has...until terminal velocity is reach, then KE would become constant.
Potential Energy - Conversely to that of KE, the further the ball falls the less PE it will have.
<em>Heat/Thermal Energy is technically also present due to the friction from the air resistance, but the transfer of energy between the air and ball is quite complex and not necessary important for basic physics.
</em>
The question itself seem kind of vague and open ended, but I could just be viewing it the wrong way.
Comment if you need more help!
Answer:
Explanation:
let force exerted by engine be F.Net force =( F-400)N, applying newton law
F-400 = 1.5 x 10³x18 =27000 ,
F = 27400 N.
velocity after 12 s = 0 + 18 x 12 = 216 m/s
Average velocity = (0 + 216 )/2 = 108 m/s
Average power = force x average velocity = 27400 x 108 = 29.6 10⁵ W .⁶
b) At 12 s , velocity = 216 m/s
Instantaneous power = velocity x force = 216 x 27400 = 59.2 x 10⁶ W.
<h2>The man have to apply force of 160 N</h2>
Explanation:
The work done to lift the bag of weight mg through height 2.5 m is 400 J
The work done can be found by relation W = mg x h
Thus mg =
=
= 160 N
Therefore the man have to apply the force of 160 N