Answer: E = 0.85
Therefore the efficiency is: E = 0.85 or 85%
Explanation:
The efficiency (e) of a Carnot engine is defined as the ratio of the work (W) done by the engine to the input heat QH
E = W/QH.
W=QH – QC,
Where Qc is the output heat.
That is,
E=1 - Qc/QH
E =1 - Tc/TH
where Tc for a temperature of the cold reservoir and TH for a temperature of the hot reservoir.
Note: The unit of temperature must be in Kelvin.
Tc = 300K
TH = 2000K
Substituting the values of E, we have;
E = 1 - 300K/2000K
E = 1 - 0.15
E = 0.85
Therefore the efficiency is: E = 0.85 or 85%
Answer:
v = 1/3 m / s = 0.333 m / s
in the direction of the truck
Explanation:
The average speed is defined by the variation of the position between the time spent
v = Δx / Δt
since the position is a vector we must add using vectors, we will assume that the displacement to the right is positive, the total displacement is
Δx = 20 - 15 +20
Δx = 25 m
therefore we calculate
v = 25/75
v = 1/3 m / s = 0.333 m / s
in the direction of the truck
<em>Angle of Dip is the angle in the vertical plane aligned with magnetic north (the magnetic meridian) between the local magnetic field and the horizontal.</em>
The force that a moving object exerts on another object upon colliding with it is rather the change in momentum divided by the amount of time elapsed during the collision.
F = Δp/Δt
F = force, Δp = change in momentum, Δt = elapsed time
Usually we say momentum is proportional to mass instead of saying momentum is proportional to weight. But sure, for two objects on the same planet, greater weight implies greater mass. Momentum is the product of mass and velocity:
p = mv
p = momentum, m = mass, v = velocity
So we have two identical cars on the same planet with one car traveling 30mph faster than the other. Let's say they both collide with a tree, both coming to a rest, and the collisions take the same amount of time to happen. The faster car loses a greater amount of momentum over the same amount of time, therefore delivering a greater force.
Choice B
Here we can say that by energy conservation principle
Elastic potential energy of spring will convert into kinetic energy of the block
so here we will have

we also know that
k = 360 N/m
x = 11 cm
m = 1.85 kg
now we will use all in above equation




so it will move with speed 2.17 m/s after separating from spring