Answer:
The height will be 4 times.
Explanation:
Given that,
The speed at the bottom of the hill doubled.
We need to calculate the height
Using conservation of energy




Therefore,

Here, m and g are constant
Hence, The height will be 4 times.
Answer:
(D) None
Explanation:
The force of gravity is the force pulling every element of matter together. The more the matter the higher the force of gravity.
Examples of this force at work are;
- The force that causes an apple to fall from the tree
- The force that causes a rock to roll downside a hill
- The force causing people to walk on the earth surface instead of floating
The force that facilitates a pen on your hand to write on a paper is friction force between the pen and the paper. Gravitational force acts downwards thus force applied on an object beside you is not the force of gravity.
Horizontal distance covered by a projectile is X = Vix *T
where Vix is the initial horizontal component of velocity and T is time taken by the projectile
Vix = ViCos theta
In question they said that initial velocity and angle is same on earth and moon
so Vix would remains same
now let's see about time taken T
time taken to reach the highest point
Vfy = Viy +gt
at highest point vertical velocity become zero so Vfy =0
0 = Vi Sin theta + gt
t = Vi Sintheta /g
Total time taken to land will be twice of that
On earth
Te= 2t
Te = 2Sinθ/g
on moon g is one-sixth of g(earth)
Tm = 2Sinθ/(g/6)
Tm = 6(2Sinθ/g)
Tm = 6Te
so total time taken by the projectile on moon will be six times the time taken on earth
From first equation X = Vix*T
we can see that X will also be 6 times on moon than earth
so projectile will cover 6 times distance on moon than on earth
Answer:
weaker has the heavier of an object
Answer:
Rutherford described the atom as consisting of a tiny positive mass surrounded by a cloud of negative electrons. Bohr thought that electrons orbited the nucleus in quantised orbits. Bohr built upon Rutherford's model of the atom. ... So it was not possible for electrons to occupy just any energy level.
Explanation: