Answer:
True, in as far as greater magnitude = greater power.
Intermolecular forces are the forces of attraction or repulsion which act between neighboring particles (atoms, molecules, or ions ). These forces are weak compared to the intramolecular forces, such as the covalent or ionic bonds between atoms in a molecule.
Hydrogen Bonding will effect the boiling point the most. Let's take an example Butane a four carbon unsaturated organic compound with molecular formula C₄H₁₀ and boiling point -1 °C.
H₃C-CH₂-CH₂-CH₃
Now, replace one hydrogen on terminal carbon with -OH group and convert it into Butanol.
H₃C-CH₂-CH₂-CH₂-OH
The Boiling point of Butanol is 117.7 °C. This increase in boiling point is due to formation of hydrogen bondings between the molecules of Butanol.
Answer:
Q = 96.6 j
Explanation:
Given data:
Heat required = ?
Initial temperature = 19°C
Final temperature = 33°C
Mass of disc = 3.0 g
Specific heat capacity = 2.3 J/g.°C
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 33°C - 19°C
ΔT = 14°C
Q = 3.0 g×2.3 J/g.°C × 14°C
Q = 96.6 j
Carboxylic acid...........