Measuring density is very important for many different industries because the density measurement will help determine the characteristics of a material, for example, whether the material will float or sink. Knowing the density of a material helps in determining the mass and volume of a material, all of which are extremely important measurements in all industries.
11
Related questions (More answers below)
Explanation:
Moles of phosphorus pentachloride present initially = 2.5 mol
Moles of phosphorus trichloride at equilibrium = 0.338 mol

Initially
2.5 mol 0 0
At equilibrium:
(2.5 - x) mol x x
So, from above, the moles of phosphorus trichloride at equilibrium , x= 0.338 mol
Mass of 0.338 moles of phosphorus trichloride at equilibrium:
= 0.338 mol × 137.5 g/mol = 46.475 g
Moles of phosphorus pentachloride present at equilibrium :
= (2.5 - 0.338) mol = 2.162 mol
Mass of 2.162 moles of phosphorus pentachloride at equilibrium:
= 2.162 mol × 208.5 g/mol = 450.777 g
Moles of chloride gas present at equilibrium : 0.338 mol
Mass of 0.338 moles of chloride gas at equilibrium:
= 0.338 mol × 71 g/mol = 23.998 g
The time taken for the isotope to decay is 46 million years.
We'll begin by calculating the number of half-lives that has elapsed. This can be obtained as follow:
- Original amount (N₀) = 50.25 g
- Amount remaining (N) = 16.75
- Number of half-lives (n) =?
2ⁿ = N₀ / N
2ⁿ = N₀ / N
2ⁿ = 50.25 / 16.75
2ⁿ = 3
Take the log of both side
Log 2ⁿ = 3
nLog 2 = Log 3
Divide both side by log 2
n = Log 3 / Log 2
n = 2
Finally, we shall determine the time.
- Half-life (t½) = 23 million years
- Number of half-lives (n) = 2
t = n × t½
t = 2 × 23
t = 46 million years
Learn more about half-life: brainly.com/question/25927447
Answer:
Certain things we think of as hard work, such as writing an exam or carrying a heavy load on level ground, are not work as defined by a scientist. The scientific definition of work reveals its relationship to energy—whenever work is done, energy is transferred.
For work, in the scientific sense, to be done, a force must be exerted and there must be motion or displacement in the direction of the force.
Answer:
Mole fraction of C₄H₄S = 0.55
Explanation:
Mole fraction is moles of solute / Total moles
Total moles are the sum of moles of solute + moles of solvent.
Let's find out the moles of our solute and our solvent.
Mass of solute: 55g
Mass of solvent: 65g
Mol = Mass / molar mass
55 g / 84.06 g/mol = 0.654 moles of C₄H₄S
65 g /123 g/mol = 0.529 moles of C₂H₃BrO
Total moles = 0.654 + 0.529 = 1.183 moles
Mole fraction of thiophene = Moles of tiophene / Total moles
0.654 / 1.183 = 0.55