The illustration would be that of a double replacement reaction.
<h3>What are double replacement reactions?</h3>
They are reactions in which 2 ionic compounds exchange ions to form two new products.
Thus, in the reaction: ab + cd ----------> ad + cb
ab and cd are two ionic compounds. The b in ab is replaced by the d in cd while the d in cd itself is replaced by the b in ab. Hence, new products, ad and cd, are formed.
More on double replacement reactions can be found here: brainly.com/question/19267538
#SPJ4
Answer:
They are classified as METALS.
Explanation:
Elements are simple substances that cannot be chemically broken down into smaller substances. Based on different characteristics, they are classified into 3 namely:
- metals
- non metals and
- metalloid( mainly act as semi- conductor).
METALS are the type of elements that loses electrons to form positive ion, that is, they are electropositive elements. They are distinguished by the following characteristics:
- LUSTROUS: they have the ability to reflect light from its surface.
- At room temperature: Metals are solid are room temperature with the exception of Mercury which is liquid at room temperature.
- They react and form Basic Compounds
- Great conductor: most metals are great conductors of heat and electricity because they possess free electrons.
- Melting Point: they have high melting points.
Answer;
The total pressure is 1.107 atm.
Explanation;
The total pressure is the sum of the pressures of the three gases in the flask
Pressure (total) = 0.215 atm + 0.066 atm + 0.826 atm = 1.107 atm
= 1.107 atm.
The new pressure : P₂ = 1038.39 mmHg
<h3>Further explanation</h3>
Given
1.5 L container at STP
Heated to 100 °C
Required
The new pressure
Solution
Conditions at T 0 ° C and P 1 atm are stated by STP (Standard Temperature and Pressure).
So P₁ = 1 atm = 760 mmHg
T₁ = 273 K
T₂ = 100 °C+273 = 373 K
Gay Lussac's Law
When the volume is not changed, the gas pressure is proportional to its absolute temperature

Input the value :
P₂=(P₁.T₂)/T₁
P₂=(760 x 373)/273
P₂ = 1038.39 mmHg